Spaces:
Running
Running
Commit
·
ebdfacb
1
Parent(s):
8b5f4b6
feat: add NTU LLaMA model
Browse files- app.py +30 -12
- css/style.css +9 -0
- utils/completion_reward.py +82 -31
- utils/completion_reward_utils.py +0 -5
app.py
CHANGED
@@ -15,7 +15,6 @@ from utils.utils import (
|
|
15 |
)
|
16 |
from utils.completion_reward import CompletionReward
|
17 |
from utils.completion_reward_utils import (
|
18 |
-
get_llm_response,
|
19 |
set_player_name,
|
20 |
set_player_selected_character,
|
21 |
create_certificate,
|
@@ -258,6 +257,10 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
258 |
mtk_description = gr.Markdown(
|
259 |
"# 蔚藍", elem_id="mtk_description", visible=False
|
260 |
)
|
|
|
|
|
|
|
|
|
261 |
|
262 |
with gr.Row():
|
263 |
openai_img = gr.Image(
|
@@ -288,6 +291,13 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
288 |
interactive=False,
|
289 |
show_download_button=False,
|
290 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
with gr.Row():
|
293 |
start_generate_story = gr.Button(
|
@@ -306,6 +316,7 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
306 |
bot2 = gr.Chatbot(visible=False, elem_id="bot2")
|
307 |
bot3 = gr.Chatbot(visible=False, elem_id="bot3")
|
308 |
bot4 = gr.Chatbot(visible=False, elem_id="bot4")
|
|
|
309 |
|
310 |
with gr.Row():
|
311 |
select_story = gr.Radio(
|
@@ -460,31 +471,26 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
460 |
],
|
461 |
queue=False,
|
462 |
).then(
|
463 |
-
lambda: create_visibility_updates(True,
|
464 |
None,
|
465 |
[
|
466 |
openai_img,
|
467 |
aws_img,
|
468 |
google_img,
|
469 |
mtk_img,
|
|
|
470 |
story_title,
|
471 |
story_description,
|
472 |
openai_description,
|
473 |
aws_description,
|
474 |
google_description,
|
475 |
mtk_description,
|
|
|
476 |
start_generate_story,
|
477 |
],
|
478 |
queue=False,
|
479 |
)
|
480 |
|
481 |
-
get_llm_response_args = dict(
|
482 |
-
fn=get_llm_response,
|
483 |
-
inputs=[completion_reward, player_logs],
|
484 |
-
outputs=[bot1, bot2, bot3, bot4],
|
485 |
-
queue=False,
|
486 |
-
)
|
487 |
-
|
488 |
get_first_llm_response_args = dict(
|
489 |
fn=get_llm_response_once,
|
490 |
inputs=[completion_reward, player_logs],
|
@@ -513,12 +519,19 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
513 |
queue=False,
|
514 |
)
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
start_generate_story.click(
|
517 |
lambda: gr.update(visible=False), None, start_generate_story, queue=False
|
518 |
).then(
|
519 |
-
lambda: create_visibility_updates(True,
|
520 |
None,
|
521 |
-
[bot1, bot2, bot3, bot4, weaving],
|
522 |
queue=False,
|
523 |
).then(
|
524 |
**get_first_llm_response_args
|
@@ -528,6 +541,8 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
528 |
**get_third_llm_response_args
|
529 |
).then(
|
530 |
**get_fourth_llm_response_args
|
|
|
|
|
531 |
).then(
|
532 |
lambda: gr.update(visible=True), None, [select_story], queue=False
|
533 |
).then(
|
@@ -580,23 +595,26 @@ with gr.Blocks(theme=seafoam, css=get_content("css/style.css")) as demo:
|
|
580 |
)
|
581 |
|
582 |
start_generate_certificate.click(
|
583 |
-
lambda: create_visibility_updates(False,
|
584 |
None,
|
585 |
[
|
586 |
openai_img,
|
587 |
aws_img,
|
588 |
google_img,
|
589 |
mtk_img,
|
|
|
590 |
story_title,
|
591 |
story_description,
|
592 |
openai_description,
|
593 |
aws_description,
|
594 |
google_description,
|
595 |
mtk_description,
|
|
|
596 |
bot1,
|
597 |
bot2,
|
598 |
bot3,
|
599 |
bot4,
|
|
|
600 |
select_story,
|
601 |
processing,
|
602 |
cancel_story,
|
|
|
15 |
)
|
16 |
from utils.completion_reward import CompletionReward
|
17 |
from utils.completion_reward_utils import (
|
|
|
18 |
set_player_name,
|
19 |
set_player_selected_character,
|
20 |
create_certificate,
|
|
|
257 |
mtk_description = gr.Markdown(
|
258 |
"# 蔚藍", elem_id="mtk_description", visible=False
|
259 |
)
|
260 |
+
ntu_description = gr.Markdown(
|
261 |
+
"# 紅寶石", elem_id="ntu_description", visible=False
|
262 |
+
)
|
263 |
+
|
264 |
|
265 |
with gr.Row():
|
266 |
openai_img = gr.Image(
|
|
|
291 |
interactive=False,
|
292 |
show_download_button=False,
|
293 |
)
|
294 |
+
ntu_img = gr.Image(
|
295 |
+
"medias/ntu.png",
|
296 |
+
visible=False,
|
297 |
+
elem_id="ntu_img",
|
298 |
+
interactive=False,
|
299 |
+
show_download_button=False,
|
300 |
+
)
|
301 |
|
302 |
with gr.Row():
|
303 |
start_generate_story = gr.Button(
|
|
|
316 |
bot2 = gr.Chatbot(visible=False, elem_id="bot2")
|
317 |
bot3 = gr.Chatbot(visible=False, elem_id="bot3")
|
318 |
bot4 = gr.Chatbot(visible=False, elem_id="bot4")
|
319 |
+
bot5 = gr.Chatbot(visible=False, elem_id="bot5")
|
320 |
|
321 |
with gr.Row():
|
322 |
select_story = gr.Radio(
|
|
|
471 |
],
|
472 |
queue=False,
|
473 |
).then(
|
474 |
+
lambda: create_visibility_updates(True, 13),
|
475 |
None,
|
476 |
[
|
477 |
openai_img,
|
478 |
aws_img,
|
479 |
google_img,
|
480 |
mtk_img,
|
481 |
+
ntu_img,
|
482 |
story_title,
|
483 |
story_description,
|
484 |
openai_description,
|
485 |
aws_description,
|
486 |
google_description,
|
487 |
mtk_description,
|
488 |
+
ntu_description,
|
489 |
start_generate_story,
|
490 |
],
|
491 |
queue=False,
|
492 |
)
|
493 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
get_first_llm_response_args = dict(
|
495 |
fn=get_llm_response_once,
|
496 |
inputs=[completion_reward, player_logs],
|
|
|
519 |
queue=False,
|
520 |
)
|
521 |
|
522 |
+
get_fifth_llm_response_args = dict(
|
523 |
+
fn=get_llm_response_once,
|
524 |
+
inputs=[completion_reward, player_logs],
|
525 |
+
outputs=bot5,
|
526 |
+
queue=False,
|
527 |
+
)
|
528 |
+
|
529 |
start_generate_story.click(
|
530 |
lambda: gr.update(visible=False), None, start_generate_story, queue=False
|
531 |
).then(
|
532 |
+
lambda: create_visibility_updates(True, 6),
|
533 |
None,
|
534 |
+
[bot1, bot2, bot3, bot4, bot5, weaving],
|
535 |
queue=False,
|
536 |
).then(
|
537 |
**get_first_llm_response_args
|
|
|
541 |
**get_third_llm_response_args
|
542 |
).then(
|
543 |
**get_fourth_llm_response_args
|
544 |
+
).then(
|
545 |
+
**get_fifth_llm_response_args
|
546 |
).then(
|
547 |
lambda: gr.update(visible=True), None, [select_story], queue=False
|
548 |
).then(
|
|
|
595 |
)
|
596 |
|
597 |
start_generate_certificate.click(
|
598 |
+
lambda: create_visibility_updates(False, 21),
|
599 |
None,
|
600 |
[
|
601 |
openai_img,
|
602 |
aws_img,
|
603 |
google_img,
|
604 |
mtk_img,
|
605 |
+
ntu_img,
|
606 |
story_title,
|
607 |
story_description,
|
608 |
openai_description,
|
609 |
aws_description,
|
610 |
google_description,
|
611 |
mtk_description,
|
612 |
+
ntu_description,
|
613 |
bot1,
|
614 |
bot2,
|
615 |
bot3,
|
616 |
bot4,
|
617 |
+
bot5,
|
618 |
select_story,
|
619 |
processing,
|
620 |
cancel_story,
|
css/style.css
CHANGED
@@ -374,6 +374,11 @@ input[type="range"]::-ms-track {
|
|
374 |
border: None !important;
|
375 |
}
|
376 |
|
|
|
|
|
|
|
|
|
|
|
377 |
#processing {
|
378 |
margin: 20vh 10vw;
|
379 |
height: 30vh;
|
@@ -434,4 +439,8 @@ input[type="range"]::-ms-track {
|
|
434 |
|
435 |
[data-testid="蔚藍-radio-label"] {
|
436 |
background: rgba(66, 130, 227, 0.4) !important;
|
|
|
|
|
|
|
|
|
437 |
}
|
|
|
374 |
border: None !important;
|
375 |
}
|
376 |
|
377 |
+
#bot4 .message {
|
378 |
+
background: rgba(227, 66, 104, 0.4) !important;
|
379 |
+
border: None !important;
|
380 |
+
}
|
381 |
+
|
382 |
#processing {
|
383 |
margin: 20vh 10vw;
|
384 |
height: 30vh;
|
|
|
439 |
|
440 |
[data-testid="蔚藍-radio-label"] {
|
441 |
background: rgba(66, 130, 227, 0.4) !important;
|
442 |
+
}
|
443 |
+
|
444 |
+
[data-testid="紅寶石-radio-label"] {
|
445 |
+
background: rgba(227, 66, 104, 0.4) !important;
|
446 |
}
|
utils/completion_reward.py
CHANGED
@@ -48,17 +48,20 @@ class CompletionReward:
|
|
48 |
self.paragraph_aws = None
|
49 |
self.paragraph_google = None
|
50 |
self.paragraph_mtk = None
|
|
|
51 |
self.player_certificate_url = None
|
52 |
self.openai_agent = OpenAIAgent()
|
53 |
self.aws_agent = AWSAgent()
|
54 |
self.google_agent = GoogleAgent()
|
55 |
self.mtk_agent = MTKAgent()
|
|
|
56 |
self.agents_responses = {}
|
57 |
self.agent_list = [
|
58 |
self.openai_agent,
|
59 |
self.aws_agent,
|
60 |
self.google_agent,
|
61 |
self.mtk_agent,
|
|
|
62 |
]
|
63 |
self.shuffled_response_order = {}
|
64 |
self.pop_response_order = []
|
@@ -67,38 +70,9 @@ class CompletionReward:
|
|
67 |
"aws": self.paragraph_aws,
|
68 |
"google": self.paragraph_google,
|
69 |
"mtk": self.paragraph_mtk,
|
|
|
70 |
}
|
71 |
|
72 |
-
def get_llm_response(self, player_logs):
|
73 |
-
openai_story = self.openai_agent.get_story(player_logs)
|
74 |
-
aws_story = self.aws_agent.get_story(player_logs)
|
75 |
-
google_story = self.google_agent.get_story(player_logs)
|
76 |
-
mtk_story = self.mtk_agent.get_story(player_logs)
|
77 |
-
agents_responses = {
|
78 |
-
"openai": openai_story,
|
79 |
-
"aws": aws_story,
|
80 |
-
"google": google_story,
|
81 |
-
"mtk": mtk_story,
|
82 |
-
}
|
83 |
-
self.paragraph_openai = agents_responses["openai"]
|
84 |
-
self.paragraph_aws = agents_responses["aws"]
|
85 |
-
self.paragraph_google = agents_responses["google"]
|
86 |
-
self.paragraph_mtk = agents_responses["mtk"]
|
87 |
-
response_items = list(agents_responses.items())
|
88 |
-
random.shuffle(response_items)
|
89 |
-
|
90 |
-
self.shuffled_response_order = {
|
91 |
-
str(index): agent for index, (agent, _) in enumerate(response_items)
|
92 |
-
}
|
93 |
-
|
94 |
-
shuffled_responses = tuple(response for _, response in response_items)
|
95 |
-
return (
|
96 |
-
[(None, shuffled_responses[0])],
|
97 |
-
[(None, shuffled_responses[1])],
|
98 |
-
[(None, shuffled_responses[2])],
|
99 |
-
[(None, shuffled_responses[3])],
|
100 |
-
)
|
101 |
-
|
102 |
def get_llm_response_once(self, player_logs):
|
103 |
if self.agent_list:
|
104 |
# Randomly select and remove an agent from the list
|
@@ -110,7 +84,7 @@ class CompletionReward:
|
|
110 |
self.agents_responses[agent.name] = story
|
111 |
self.pop_response_order.append(agent.name)
|
112 |
|
113 |
-
if len(self.pop_response_order) ==
|
114 |
self.shuffled_response_order = {
|
115 |
str(index): agent for index, agent in enumerate(self.pop_response_order)
|
116 |
}
|
@@ -118,6 +92,7 @@ class CompletionReward:
|
|
118 |
self.paragraph_aws = self.agents_responses["aws"]
|
119 |
self.paragraph_google = self.agents_responses["google"]
|
120 |
self.paragraph_mtk = self.agents_responses["mtk"]
|
|
|
121 |
|
122 |
return [(None, story)]
|
123 |
|
@@ -137,6 +112,7 @@ class CompletionReward:
|
|
137 |
"索拉拉": "1",
|
138 |
"薇丹特": "2",
|
139 |
"蔚藍": "3",
|
|
|
140 |
}
|
141 |
self.player_selected_character = player_selected_character
|
142 |
self.player_selected_model = self.shuffled_response_order[
|
@@ -290,6 +266,8 @@ class OpenAIAgent:
|
|
290 |
logging.error(f"OpenAI Attempt {retry_attempts}: {e}")
|
291 |
time.sleep(1 * retry_attempts)
|
292 |
|
|
|
|
|
293 |
def get_background(self):
|
294 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
295 |
image_url = None
|
@@ -355,6 +333,8 @@ class AWSAgent:
|
|
355 |
logging.error(f"AWS Attempt {retry_attempts}: {e}")
|
356 |
time.sleep(1 * retry_attempts)
|
357 |
|
|
|
|
|
358 |
|
359 |
class GoogleAgent:
|
360 |
from google.cloud import aiplatform
|
@@ -412,6 +392,8 @@ class GoogleAgent:
|
|
412 |
logging.error(f"Google Attempt {retry_attempts}: {e}")
|
413 |
time.sleep(1 * retry_attempts)
|
414 |
|
|
|
|
|
415 |
|
416 |
class MTKAgent:
|
417 |
def __init__(self):
|
@@ -485,7 +467,76 @@ class MTKAgent:
|
|
485 |
retry_attempts += 1
|
486 |
logging.error(f"MTK Attempt {retry_attempts}: {e}")
|
487 |
time.sleep(1 * retry_attempts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
|
|
489 |
|
490 |
class ImageProcessor:
|
491 |
@staticmethod
|
|
|
48 |
self.paragraph_aws = None
|
49 |
self.paragraph_google = None
|
50 |
self.paragraph_mtk = None
|
51 |
+
self.paragraph_ntu = None
|
52 |
self.player_certificate_url = None
|
53 |
self.openai_agent = OpenAIAgent()
|
54 |
self.aws_agent = AWSAgent()
|
55 |
self.google_agent = GoogleAgent()
|
56 |
self.mtk_agent = MTKAgent()
|
57 |
+
self.ntu_agent = NTUAgent()
|
58 |
self.agents_responses = {}
|
59 |
self.agent_list = [
|
60 |
self.openai_agent,
|
61 |
self.aws_agent,
|
62 |
self.google_agent,
|
63 |
self.mtk_agent,
|
64 |
+
self.ntu_agent,
|
65 |
]
|
66 |
self.shuffled_response_order = {}
|
67 |
self.pop_response_order = []
|
|
|
70 |
"aws": self.paragraph_aws,
|
71 |
"google": self.paragraph_google,
|
72 |
"mtk": self.paragraph_mtk,
|
73 |
+
"ntu": self.paragraph_ntu,
|
74 |
}
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def get_llm_response_once(self, player_logs):
|
77 |
if self.agent_list:
|
78 |
# Randomly select and remove an agent from the list
|
|
|
84 |
self.agents_responses[agent.name] = story
|
85 |
self.pop_response_order.append(agent.name)
|
86 |
|
87 |
+
if len(self.pop_response_order) == 5:
|
88 |
self.shuffled_response_order = {
|
89 |
str(index): agent for index, agent in enumerate(self.pop_response_order)
|
90 |
}
|
|
|
92 |
self.paragraph_aws = self.agents_responses["aws"]
|
93 |
self.paragraph_google = self.agents_responses["google"]
|
94 |
self.paragraph_mtk = self.agents_responses["mtk"]
|
95 |
+
self.paragraph_ntu = self.agents_responses["ntu"]
|
96 |
|
97 |
return [(None, story)]
|
98 |
|
|
|
112 |
"索拉拉": "1",
|
113 |
"薇丹特": "2",
|
114 |
"蔚藍": "3",
|
115 |
+
"紅寶石": "4",
|
116 |
}
|
117 |
self.player_selected_character = player_selected_character
|
118 |
self.player_selected_model = self.shuffled_response_order[
|
|
|
266 |
logging.error(f"OpenAI Attempt {retry_attempts}: {e}")
|
267 |
time.sleep(1 * retry_attempts)
|
268 |
|
269 |
+
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。'
|
270 |
+
|
271 |
def get_background(self):
|
272 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
273 |
image_url = None
|
|
|
333 |
logging.error(f"AWS Attempt {retry_attempts}: {e}")
|
334 |
time.sleep(1 * retry_attempts)
|
335 |
|
336 |
+
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。'
|
337 |
+
|
338 |
|
339 |
class GoogleAgent:
|
340 |
from google.cloud import aiplatform
|
|
|
392 |
logging.error(f"Google Attempt {retry_attempts}: {e}")
|
393 |
time.sleep(1 * retry_attempts)
|
394 |
|
395 |
+
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。'
|
396 |
+
|
397 |
|
398 |
class MTKAgent:
|
399 |
def __init__(self):
|
|
|
467 |
retry_attempts += 1
|
468 |
logging.error(f"MTK Attempt {retry_attempts}: {e}")
|
469 |
time.sleep(1 * retry_attempts)
|
470 |
+
|
471 |
+
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。'
|
472 |
+
|
473 |
+
class NTUAgent:
|
474 |
+
def __init__(self):
|
475 |
+
self.name = "ntu"
|
476 |
+
|
477 |
+
def get_story(self, user_log):
|
478 |
+
system_prompt = """
|
479 |
+
我正在舉辦一個學習型的活動,我為學生設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
|
480 |
+
- 以「你」稱呼學生
|
481 |
+
- 可以裁減內容以將內容限制在 1024 個 token 內
|
482 |
+
- 試著合併故事記錄成一段連貫、有吸引力的故事
|
483 |
+
- 請使用 zh_TW
|
484 |
+
- 請直接回覆故事內容,不需要回覆任何訊息
|
485 |
+
"""
|
486 |
+
|
487 |
+
user_log = f"""
|
488 |
+
```{user_log}
|
489 |
+
```
|
490 |
+
"""
|
491 |
+
|
492 |
+
url = 'http://api.twllm.com:20002/v1/chat/completions'
|
493 |
+
|
494 |
+
data = {
|
495 |
+
"model": "yentinglin/Taiwan-LLM-13B-v2.0-chat",
|
496 |
+
"messages": f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```",
|
497 |
+
"temperature": 0.7,
|
498 |
+
"top_p": 1,
|
499 |
+
"n": 1,
|
500 |
+
"max_tokens": 2048,
|
501 |
+
"stop": ["string"],
|
502 |
+
"stream": False,
|
503 |
+
"presence_penalty": 0,
|
504 |
+
"frequency_penalty": 0,
|
505 |
+
"user": "string",
|
506 |
+
"best_of": 1,
|
507 |
+
"top_k": -1,
|
508 |
+
"ignore_eos": False,
|
509 |
+
"use_beam_search": False,
|
510 |
+
"stop_token_ids": [0],
|
511 |
+
"skip_special_tokens": True,
|
512 |
+
"spaces_between_special_tokens": True,
|
513 |
+
"add_generation_prompt": True,
|
514 |
+
"echo": False,
|
515 |
+
"repetition_penalty": 1,
|
516 |
+
"min_p": 0
|
517 |
+
}
|
518 |
+
|
519 |
+
headers = {
|
520 |
+
'accept': 'application/json',
|
521 |
+
'Content-Type': 'application/json'
|
522 |
+
}
|
523 |
+
|
524 |
+
retry_attempts = 0
|
525 |
+
while retry_attempts < 5:
|
526 |
+
try:
|
527 |
+
response = requests.post(url, headers=headers, data=json.dumps(data)).json()
|
528 |
+
response_text = response["choices"][0]["message"]["content"]
|
529 |
+
|
530 |
+
chinese_converter = OpenCC("s2tw")
|
531 |
+
|
532 |
+
return chinese_converter.convert(response_text)
|
533 |
+
|
534 |
+
except Exception as e:
|
535 |
+
retry_attempts += 1
|
536 |
+
logging.error(f"NTU Attempt {retry_attempts}: {e}")
|
537 |
+
time.sleep(1 * retry_attempts)
|
538 |
|
539 |
+
return '星際夥伴短時間內寫了太多故事,需要休息一下,請稍後再試,或是選擇其他星際夥伴的故事。'
|
540 |
|
541 |
class ImageProcessor:
|
542 |
@staticmethod
|
utils/completion_reward_utils.py
CHANGED
@@ -2,11 +2,6 @@ import json
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
|
6 |
-
def get_llm_response(completion_reward, *args):
|
7 |
-
return completion_reward.get_llm_response(*args)
|
8 |
-
|
9 |
-
|
10 |
def get_llm_response_once(completion_reward, *args):
|
11 |
return completion_reward.get_llm_response_once(*args)
|
12 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
def get_llm_response_once(completion_reward, *args):
|
6 |
return completion_reward.get_llm_response_once(*args)
|
7 |
|