Update services/faq_service.py
Browse files- services/faq_service.py +102 -28
services/faq_service.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
# services/faq_service.py
|
| 2 |
from typing import List, Dict, Any, Optional
|
| 3 |
import aiohttp
|
| 4 |
from bs4 import BeautifulSoup
|
| 5 |
import faiss
|
| 6 |
import logging
|
| 7 |
from config.config import settings
|
|
|
|
|
|
|
| 8 |
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
|
@@ -13,54 +14,118 @@ class FAQService:
|
|
| 13 |
self.embedder = model_service.embedder
|
| 14 |
self.faiss_index = None
|
| 15 |
self.faq_data = []
|
|
|
|
|
|
|
| 16 |
|
| 17 |
async def fetch_faq_pages(self) -> List[Dict[str, Any]]:
|
| 18 |
async with aiohttp.ClientSession() as session:
|
| 19 |
try:
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
soup = BeautifulSoup(sitemap, 'xml')
|
| 24 |
-
faq_urls = [loc.text for loc in soup.find_all('loc') if "/faq/" in loc.text]
|
| 25 |
-
|
| 26 |
-
tasks = [self.fetch_faq_content(url, session) for url in faq_urls]
|
| 27 |
-
return await asyncio.gather(*tasks)
|
| 28 |
except Exception as e:
|
| 29 |
-
logger.error(f"Error fetching FAQ
|
| 30 |
return []
|
| 31 |
|
| 32 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
async with session.get(url, timeout=settings.TIMEOUT) as response:
|
| 35 |
if response.status == 200:
|
| 36 |
content = await response.text()
|
| 37 |
soup = BeautifulSoup(content, 'html.parser')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
answer = section.find(['p']).text.strip() if section.find(['p']) else None
|
| 46 |
|
| 47 |
-
|
| 48 |
-
faqs.append({"question": question, "answer": answer})
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
except Exception as e:
|
| 52 |
-
logger.error(f"Error
|
| 53 |
-
|
|
|
|
| 54 |
|
| 55 |
async def index_faqs(self):
|
| 56 |
faq_pages = await self.fetch_faq_pages()
|
| 57 |
-
faq_pages = [page for page in faq_pages if page]
|
| 58 |
|
| 59 |
self.faq_data = []
|
| 60 |
all_texts = []
|
| 61 |
-
|
| 62 |
for faq_page in faq_pages:
|
| 63 |
for item in faq_page['faqs']:
|
|
|
|
| 64 |
combined_text = f"{item['question']} {item['answer']}"
|
| 65 |
all_texts.append(combined_text)
|
| 66 |
self.faq_data.append({
|
|
@@ -68,7 +133,12 @@ class FAQService:
|
|
| 68 |
"answer": item['answer'],
|
| 69 |
"source": faq_page['url']
|
| 70 |
})
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
embeddings = self.embedder.encode(all_texts, convert_to_tensor=True).cpu().detach().numpy()
|
| 73 |
dimension = embeddings.shape[1]
|
| 74 |
self.faiss_index = faiss.IndexFlatL2(dimension)
|
|
@@ -77,15 +147,19 @@ class FAQService:
|
|
| 77 |
async def search_faqs(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
| 78 |
if not self.faiss_index:
|
| 79 |
await self.index_faqs()
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
|
| 82 |
distances, indices = self.faiss_index.search(query_embedding, top_k)
|
| 83 |
-
|
| 84 |
results = []
|
| 85 |
for i, idx in enumerate(indices[0]):
|
| 86 |
if idx < len(self.faq_data):
|
| 87 |
result = self.faq_data[idx].copy()
|
| 88 |
result["score"] = float(distances[0][i])
|
| 89 |
results.append(result)
|
| 90 |
-
|
| 91 |
return results
|
|
|
|
|
|
|
| 1 |
from typing import List, Dict, Any, Optional
|
| 2 |
import aiohttp
|
| 3 |
from bs4 import BeautifulSoup
|
| 4 |
import faiss
|
| 5 |
import logging
|
| 6 |
from config.config import settings
|
| 7 |
+
import asyncio
|
| 8 |
+
from urllib.parse import urljoin
|
| 9 |
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
|
|
| 14 |
self.embedder = model_service.embedder
|
| 15 |
self.faiss_index = None
|
| 16 |
self.faq_data = []
|
| 17 |
+
self.visited_urls = set()
|
| 18 |
+
self.base_url = "https://www.bofrost.de/faq/"
|
| 19 |
|
| 20 |
async def fetch_faq_pages(self) -> List[Dict[str, Any]]:
|
| 21 |
async with aiohttp.ClientSession() as session:
|
| 22 |
try:
|
| 23 |
+
# Start with the main FAQ page
|
| 24 |
+
pages = await self.crawl_faq_pages(self.base_url, session)
|
| 25 |
+
return [page for page in pages if page]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
except Exception as e:
|
| 27 |
+
logger.error(f"Error fetching FAQ pages: {e}")
|
| 28 |
return []
|
| 29 |
|
| 30 |
+
async def crawl_faq_pages(self, url: str, session: aiohttp.ClientSession) -> List[Dict[str, Any]]:
|
| 31 |
+
if url in self.visited_urls or not url.startswith(self.base_url):
|
| 32 |
+
return []
|
| 33 |
+
|
| 34 |
+
self.visited_urls.add(url)
|
| 35 |
+
pages = []
|
| 36 |
+
|
| 37 |
try:
|
| 38 |
async with session.get(url, timeout=settings.TIMEOUT) as response:
|
| 39 |
if response.status == 200:
|
| 40 |
content = await response.text()
|
| 41 |
soup = BeautifulSoup(content, 'html.parser')
|
| 42 |
+
|
| 43 |
+
# Add current page content
|
| 44 |
+
page_content = await self.parse_faq_content(soup, url)
|
| 45 |
+
if page_content:
|
| 46 |
+
pages.append(page_content)
|
| 47 |
|
| 48 |
+
# Find and follow FAQ links
|
| 49 |
+
tasks = []
|
| 50 |
+
for link in soup.find_all('a', href=True):
|
| 51 |
+
href = link['href']
|
| 52 |
+
full_url = urljoin(url, href)
|
| 53 |
+
|
| 54 |
+
if (full_url.startswith(self.base_url) and
|
| 55 |
+
full_url not in self.visited_urls):
|
| 56 |
+
tasks.append(self.crawl_faq_pages(full_url, session))
|
| 57 |
+
|
| 58 |
+
if tasks:
|
| 59 |
+
results = await asyncio.gather(*tasks)
|
| 60 |
+
for result in results:
|
| 61 |
+
pages.extend(result)
|
| 62 |
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error crawling FAQ page {url}: {e}")
|
|
|
|
| 65 |
|
| 66 |
+
return pages
|
|
|
|
| 67 |
|
| 68 |
+
async def parse_faq_content(self, soup: BeautifulSoup, url: str) -> Optional[Dict[str, Any]]:
|
| 69 |
+
try:
|
| 70 |
+
faqs = []
|
| 71 |
+
faq_items = soup.find_all('div', class_='faq-item')
|
| 72 |
+
|
| 73 |
+
for item in faq_items:
|
| 74 |
+
# Extract question
|
| 75 |
+
question_elem = item.find('a', class_='headline-collapse')
|
| 76 |
+
if not question_elem:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
question = question_elem.find('span')
|
| 80 |
+
if not question:
|
| 81 |
+
continue
|
| 82 |
+
|
| 83 |
+
question_text = question.text.strip()
|
| 84 |
+
|
| 85 |
+
# Extract answer
|
| 86 |
+
content_elem = item.find('div', class_='content-collapse')
|
| 87 |
+
if not content_elem:
|
| 88 |
+
continue
|
| 89 |
+
|
| 90 |
+
wysiwyg = content_elem.find('div', class_='wysiwyg-content')
|
| 91 |
+
if not wysiwyg:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
# Extract all text while preserving structure
|
| 95 |
+
answer_parts = []
|
| 96 |
+
for elem in wysiwyg.find_all(['p', 'li']):
|
| 97 |
+
text = elem.get_text(strip=True)
|
| 98 |
+
if text:
|
| 99 |
+
answer_parts.append(text)
|
| 100 |
+
|
| 101 |
+
answer_text = ' '.join(answer_parts)
|
| 102 |
+
|
| 103 |
+
if question_text and answer_text:
|
| 104 |
+
faqs.append({
|
| 105 |
+
"question": question_text,
|
| 106 |
+
"answer": answer_text
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
if faqs:
|
| 110 |
+
return {
|
| 111 |
+
"url": url,
|
| 112 |
+
"faqs": faqs
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
except Exception as e:
|
| 116 |
+
logger.error(f"Error parsing FAQ content from {url}: {e}")
|
| 117 |
+
|
| 118 |
+
return None
|
| 119 |
|
| 120 |
async def index_faqs(self):
|
| 121 |
faq_pages = await self.fetch_faq_pages()
|
|
|
|
| 122 |
|
| 123 |
self.faq_data = []
|
| 124 |
all_texts = []
|
| 125 |
+
|
| 126 |
for faq_page in faq_pages:
|
| 127 |
for item in faq_page['faqs']:
|
| 128 |
+
# Combine question and answer for better semantic search
|
| 129 |
combined_text = f"{item['question']} {item['answer']}"
|
| 130 |
all_texts.append(combined_text)
|
| 131 |
self.faq_data.append({
|
|
|
|
| 133 |
"answer": item['answer'],
|
| 134 |
"source": faq_page['url']
|
| 135 |
})
|
| 136 |
+
|
| 137 |
+
if not all_texts:
|
| 138 |
+
logger.warning("No FAQ content found to index")
|
| 139 |
+
return
|
| 140 |
+
|
| 141 |
+
# Create embeddings and index them
|
| 142 |
embeddings = self.embedder.encode(all_texts, convert_to_tensor=True).cpu().detach().numpy()
|
| 143 |
dimension = embeddings.shape[1]
|
| 144 |
self.faiss_index = faiss.IndexFlatL2(dimension)
|
|
|
|
| 147 |
async def search_faqs(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
| 148 |
if not self.faiss_index:
|
| 149 |
await self.index_faqs()
|
| 150 |
+
|
| 151 |
+
if not self.faq_data:
|
| 152 |
+
logger.warning("No FAQ data available for search")
|
| 153 |
+
return []
|
| 154 |
+
|
| 155 |
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
|
| 156 |
distances, indices = self.faiss_index.search(query_embedding, top_k)
|
| 157 |
+
|
| 158 |
results = []
|
| 159 |
for i, idx in enumerate(indices[0]):
|
| 160 |
if idx < len(self.faq_data):
|
| 161 |
result = self.faq_data[idx].copy()
|
| 162 |
result["score"] = float(distances[0][i])
|
| 163 |
results.append(result)
|
| 164 |
+
|
| 165 |
return results
|