Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| from resources.data import fixed_messages, topic_lists | |
| from utils.ui import add_candidate_message, add_interviewer_message | |
| def get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="Coding", interview_type="coding"): | |
| with gr.Tab(name, render=False, elem_id=f"{interview_type}_tab") as problem_tab: | |
| chat_history = gr.State([]) | |
| previous_code = gr.State("") | |
| started_coding = gr.State(False) | |
| interview_type_var = gr.State(interview_type) | |
| with gr.Accordion("Settings") as init_acc: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("##### Problem settings") | |
| with gr.Row(): | |
| gr.Markdown("Difficulty") | |
| difficulty_select = gr.Dropdown( | |
| label="Select difficulty", | |
| choices=["Easy", "Medium", "Hard"], | |
| value="Medium", | |
| container=False, | |
| allow_custom_value=True, | |
| elem_id=f"{interview_type}_difficulty_select", | |
| ) | |
| with gr.Row(): | |
| topics = topic_lists[interview_type].copy() | |
| np.random.shuffle(topics) | |
| gr.Markdown("Topic (can type custom value)") | |
| topic_select = gr.Dropdown( | |
| label="Select topic", | |
| choices=topics, | |
| value=topics[0], | |
| container=False, | |
| allow_custom_value=True, | |
| elem_id=f"{interview_type}_topic_select", | |
| ) | |
| with gr.Column(scale=2): | |
| requirements = gr.Textbox( | |
| label="Requirements", | |
| placeholder="Specify additional requirements", | |
| lines=5, | |
| elem_id=f"{interview_type}_requirements", | |
| ) | |
| start_btn = gr.Button("Generate a problem", elem_id=f"{interview_type}_start_btn") | |
| with gr.Accordion("Problem statement", open=True) as problem_acc: | |
| description = gr.Markdown(elem_id=f"{interview_type}_problem_description") | |
| with gr.Accordion("Solution", open=False) as solution_acc: | |
| with gr.Row() as content: | |
| with gr.Column(scale=2): | |
| if interview_type == "coding": | |
| code = gr.Code( | |
| label="Please write your code here. You can use any language, but only Python syntax highlighting is available.", | |
| language="python", | |
| lines=46, | |
| elem_id=f"{interview_type}_code", | |
| ) | |
| elif interview_type == "sql": | |
| code = gr.Code( | |
| label="Please write your query here.", | |
| language="sql", | |
| lines=46, | |
| elem_id=f"{interview_type}_code", | |
| ) | |
| else: | |
| code = gr.Code( | |
| label="Please write any notes for your solution here.", | |
| language=None, | |
| lines=46, | |
| elem_id=f"{interview_type}_code", | |
| ) | |
| with gr.Column(scale=1): | |
| end_btn = gr.Button("Finish the interview", interactive=False, variant="stop", elem_id=f"{interview_type}_end_btn") | |
| chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, elem_id=f"{interview_type}_chat") | |
| message = gr.Textbox( | |
| label="Message", | |
| show_label=False, | |
| lines=3, | |
| max_lines=3, | |
| interactive=True, | |
| container=False, | |
| elem_id=f"{interview_type}_message", | |
| ) | |
| send_btn = gr.Button("Send", interactive=False, elem_id=f"{interview_type}_send_btn") | |
| audio_input = gr.Audio(interactive=False, **default_audio_params, elem_id=f"{interview_type}_audio_input") | |
| audio_buffer = gr.State(np.array([], dtype=np.int16)) | |
| transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}) | |
| with gr.Accordion("Feedback", open=True) as feedback_acc: | |
| feedback = gr.Markdown(elem_id=f"{interview_type}_feedback") | |
| start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success( | |
| fn=lambda: True, outputs=[started_coding] | |
| ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success( | |
| fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn] | |
| ).success( | |
| fn=llm.get_problem, | |
| inputs=[requirements, difficulty_select, topic_select, interview_type_var], | |
| outputs=[description], | |
| scroll_to_output=True, | |
| ).success( | |
| fn=llm.init_bot, inputs=[description, interview_type_var], outputs=[chat_history] | |
| ).success( | |
| fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)), | |
| outputs=[solution_acc, end_btn, audio_input, send_btn], | |
| ) | |
| end_btn.click( | |
| fn=add_interviewer_message(fixed_messages["end"]), | |
| inputs=[chat], | |
| outputs=[chat], | |
| ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success( | |
| fn=lambda: ( | |
| gr.update(open=False), | |
| gr.update(interactive=False), | |
| gr.update(open=False), | |
| gr.update(interactive=False), | |
| gr.update(interactive=False), | |
| ), | |
| outputs=[solution_acc, end_btn, problem_acc, audio_input, send_btn], | |
| ).success( | |
| fn=llm.end_interview, inputs=[description, chat_history, interview_type_var], outputs=[feedback] | |
| ) | |
| send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success( | |
| fn=lambda: None, outputs=[message] | |
| ).success( | |
| fn=llm.send_request, | |
| inputs=[code, previous_code, chat_history, chat], | |
| outputs=[chat_history, chat, previous_code], | |
| ).success( | |
| fn=tts.read_last_message, inputs=[chat], outputs=[audio_output] | |
| ).success( | |
| fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer] | |
| ).success( | |
| fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript] | |
| ) | |
| if stt.streaming: | |
| audio_input.stream( | |
| stt.process_audio_chunk, | |
| inputs=[audio_input, audio_buffer, transcript], | |
| outputs=[transcript, audio_buffer, message], | |
| show_progress="hidden", | |
| ) | |
| audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn]) | |
| else: | |
| audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success( | |
| fn=lambda: gr.update(interactive=True), outputs=[send_btn] | |
| ).success(fn=lambda: None, outputs=[audio_input]) | |
| # TODO: add proper messages and clean up when changing the interview type | |
| # problem_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success( | |
| # fn=tts.read_last_message, inputs=[chat], outputs=[audio_output] | |
| # ) | |
| return problem_tab | |