Spaces:
Building
Building
Andy Lee
commited on
Commit
Β·
78ec24e
1
Parent(s):
6c8b7ac
fix: keep simple, and use hf_token for qwen
Browse files- app.py +114 -352
- config.py +7 -19
- hf_chat.py +2 -2
app.py
CHANGED
@@ -4,120 +4,41 @@ import os
|
|
4 |
import time
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
-
from typing import Dict, List, Any
|
8 |
from pathlib import Path
|
9 |
|
10 |
-
|
11 |
-
from geo_bot import (
|
12 |
-
GeoBot,
|
13 |
-
AGENT_PROMPT_TEMPLATE,
|
14 |
-
BENCHMARK_PROMPT,
|
15 |
-
)
|
16 |
from benchmark import MapGuesserBenchmark
|
17 |
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
|
18 |
from langchain_openai import ChatOpenAI
|
19 |
from langchain_anthropic import ChatAnthropic
|
20 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
21 |
-
|
22 |
from hf_chat import HuggingFaceChat
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
key_status["OpenAI"] = "β
Available"
|
34 |
-
else:
|
35 |
-
key_status["OpenAI"] = "β Missing"
|
36 |
-
|
37 |
-
# Anthropic
|
38 |
-
anthropic_key = st.secrets.get("ANTHROPIC_API_KEY", "")
|
39 |
-
if anthropic_key:
|
40 |
-
os.environ["ANTHROPIC_API_KEY"] = anthropic_key
|
41 |
-
key_status["Anthropic"] = "β
Available"
|
42 |
-
else:
|
43 |
-
key_status["Anthropic"] = "β Missing"
|
44 |
-
|
45 |
-
# Google
|
46 |
-
google_key = st.secrets.get("GOOGLE_API_KEY", "")
|
47 |
-
if google_key:
|
48 |
-
os.environ["GOOGLE_API_KEY"] = google_key
|
49 |
-
key_status["Google"] = "β
Available"
|
50 |
-
else:
|
51 |
-
key_status["Google"] = "β Missing"
|
52 |
-
|
53 |
-
# HuggingFace
|
54 |
-
hf_key = st.secrets.get("HUGGINGFACE_API_KEY", "")
|
55 |
-
if hf_key:
|
56 |
-
os.environ["HUGGINGFACE_API_KEY"] = hf_key
|
57 |
-
key_status["HuggingFace"] = "β
Available"
|
58 |
-
else:
|
59 |
-
key_status["HuggingFace"] = "β Missing"
|
60 |
-
|
61 |
-
return key_status
|
62 |
-
|
63 |
-
|
64 |
-
def get_available_models(key_status):
|
65 |
-
"""Get available models based on API key status"""
|
66 |
-
available_models = {}
|
67 |
-
|
68 |
-
for model_id, config in MODELS_CONFIG.items():
|
69 |
-
api_key_env = config["api_key_env"]
|
70 |
-
|
71 |
-
# Check if required API key is available
|
72 |
-
if (
|
73 |
-
api_key_env == "OPENAI_API_KEY"
|
74 |
-
and "OpenAI" in key_status
|
75 |
-
and "β
" in key_status["OpenAI"]
|
76 |
-
):
|
77 |
-
available_models[model_id] = config
|
78 |
-
elif (
|
79 |
-
api_key_env == "ANTHROPIC_API_KEY"
|
80 |
-
and "Anthropic" in key_status
|
81 |
-
and "β
" in key_status["Anthropic"]
|
82 |
-
):
|
83 |
-
available_models[model_id] = config
|
84 |
-
elif (
|
85 |
-
api_key_env == "GOOGLE_API_KEY"
|
86 |
-
and "Google" in key_status
|
87 |
-
and "β
" in key_status["Google"]
|
88 |
-
):
|
89 |
-
available_models[model_id] = config
|
90 |
-
elif (
|
91 |
-
api_key_env == "HUGGINGFACE_API_KEY"
|
92 |
-
and "HuggingFace" in key_status
|
93 |
-
and "β
" in key_status["HuggingFace"]
|
94 |
-
):
|
95 |
-
if HuggingFaceChat is not None: # Only if wrapper is available
|
96 |
-
available_models[model_id] = config
|
97 |
-
|
98 |
-
return available_models
|
99 |
|
100 |
|
101 |
def get_available_datasets():
|
102 |
-
"""Get list of available datasets"""
|
103 |
datasets_dir = Path("datasets")
|
104 |
if not datasets_dir.exists():
|
105 |
return ["default"]
|
106 |
-
|
107 |
datasets = []
|
108 |
for dataset_dir in datasets_dir.iterdir():
|
109 |
if dataset_dir.is_dir():
|
110 |
-
|
111 |
-
data_paths = get_data_paths(dataset_name)
|
112 |
if os.path.exists(data_paths["golden_labels"]):
|
113 |
-
datasets.append(
|
114 |
-
|
115 |
return datasets if datasets else ["default"]
|
116 |
|
117 |
|
118 |
-
def get_model_class(
|
119 |
-
"""Get the appropriate model class based on config"""
|
120 |
-
class_name = model_config["class"]
|
121 |
if class_name == "ChatOpenAI":
|
122 |
return ChatOpenAI
|
123 |
elif class_name == "ChatAnthropic":
|
@@ -130,185 +51,84 @@ def get_model_class(model_config):
|
|
130 |
raise ValueError(f"Unknown model class: {class_name}")
|
131 |
|
132 |
|
133 |
-
#
|
134 |
st.set_page_config(page_title="MapCrunch AI Agent", layout="wide")
|
135 |
st.title("πΊοΈ MapCrunch AI Agent")
|
136 |
-
st.caption(
|
137 |
-
"An AI agent that explores and identifies geographic locations through multi-step interaction."
|
138 |
-
)
|
139 |
|
140 |
-
#
|
141 |
-
key_status = setup_api_keys()
|
142 |
-
available_models = get_available_models(key_status)
|
143 |
-
|
144 |
-
# --- Sidebar for Configuration ---
|
145 |
with st.sidebar:
|
146 |
-
st.header("βοΈ
|
147 |
-
|
148 |
-
# Show API key status
|
149 |
-
with st.expander("π API Key Status", expanded=False):
|
150 |
-
for provider, status in key_status.items():
|
151 |
-
st.text(f"{provider}: {status}")
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
)
|
157 |
-
st.info(
|
158 |
-
"Add these secrets in your Space settings:\n- OPENAI_API_KEY\n- ANTHROPIC_API_KEY\n- GOOGLE_API_KEY\n- HUGGINGFACE_API_KEY"
|
159 |
-
)
|
160 |
|
161 |
-
#
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
# Model selection (only show available models)
|
166 |
-
if not available_models:
|
167 |
-
st.error("β No models available! Please configure API keys.")
|
168 |
-
st.stop()
|
169 |
-
|
170 |
-
model_options = {
|
171 |
-
model_id: f"{model_id} - {config['description']}"
|
172 |
-
for model_id, config in available_models.items()
|
173 |
-
}
|
174 |
-
model_choice = st.selectbox(
|
175 |
-
"Select AI Model",
|
176 |
-
list(model_options.keys()),
|
177 |
-
format_func=lambda x: model_options[x],
|
178 |
-
)
|
179 |
|
180 |
-
|
181 |
-
|
|
|
182 |
)
|
183 |
|
184 |
-
|
185 |
-
data_paths = get_data_paths(dataset_choice)
|
186 |
-
try:
|
187 |
-
with open(data_paths["golden_labels"], "r", encoding="utf-8") as f:
|
188 |
-
golden_labels = json.load(f).get("samples", [])
|
189 |
-
total_samples = len(golden_labels)
|
190 |
-
|
191 |
-
st.info(f"Dataset '{dataset_choice}' has {total_samples} samples")
|
192 |
-
|
193 |
-
num_samples_to_run = st.slider(
|
194 |
-
"Number of Samples to Test",
|
195 |
-
min_value=1,
|
196 |
-
max_value=total_samples,
|
197 |
-
value=min(3, total_samples),
|
198 |
-
)
|
199 |
-
except FileNotFoundError:
|
200 |
-
st.error(
|
201 |
-
f"Dataset '{dataset_choice}' not found at {data_paths['golden_labels']}. Please create the dataset first."
|
202 |
-
)
|
203 |
-
golden_labels = []
|
204 |
-
num_samples_to_run = 0
|
205 |
-
|
206 |
-
start_button = st.button(
|
207 |
-
"π Start Agent Benchmark", disabled=(num_samples_to_run == 0), type="primary"
|
208 |
-
)
|
209 |
|
210 |
-
#
|
211 |
if start_button:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
if not config:
|
217 |
-
st.error(f"Model {model_choice} is not available!")
|
218 |
-
st.stop()
|
219 |
-
|
220 |
-
try:
|
221 |
-
model_class = get_model_class(config)
|
222 |
-
model_instance_name = config["model_name"]
|
223 |
-
except Exception as e:
|
224 |
-
st.error(f"Failed to load model class: {e}")
|
225 |
-
st.stop()
|
226 |
-
|
227 |
-
# Initialize helpers and result lists
|
228 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
|
229 |
all_results = []
|
230 |
|
231 |
-
st.
|
232 |
-
f"Starting Agent Benchmark... Dataset: {dataset_choice}, Model: {model_choice}, Steps: {steps_per_sample}, Samples: {num_samples_to_run}"
|
233 |
-
)
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
if not bot.controller.load_location_from_data(sample):
|
256 |
-
st.error(f"Failed to load location for sample {sample_id}. Skipping.")
|
257 |
-
continue
|
258 |
-
|
259 |
-
bot.controller.setup_clean_environment()
|
260 |
-
|
261 |
-
# Create the visualization layout for the current sample
|
262 |
-
col1, col2 = st.columns([2, 3])
|
263 |
-
with col1:
|
264 |
-
image_placeholder = st.empty()
|
265 |
-
with col2:
|
266 |
-
reasoning_placeholder = st.empty()
|
267 |
-
action_placeholder = st.empty()
|
268 |
-
|
269 |
-
# --- Inner agent exploration loop ---
|
270 |
-
history = []
|
271 |
-
final_guess = None
|
272 |
-
|
273 |
-
for step in range(steps_per_sample):
|
274 |
-
step_num = step + 1
|
275 |
-
unique_step_id = f"sample_{i}_step_{step_num}" # Unique identifier
|
276 |
-
|
277 |
-
reasoning_placeholder.info(
|
278 |
-
f"π€ Thinking... (Step {step_num}/{steps_per_sample})"
|
279 |
-
)
|
280 |
-
action_placeholder.empty()
|
281 |
|
282 |
-
try:
|
283 |
-
# Observe and label arrows
|
284 |
bot.controller.label_arrows_on_screen()
|
285 |
screenshot_bytes = bot.controller.take_street_view_screenshot()
|
|
|
286 |
|
287 |
-
|
288 |
-
image_placeholder.image(
|
289 |
-
screenshot_bytes,
|
290 |
-
caption=f"π Step {step_num} - What AI Sees Now",
|
291 |
-
use_column_width=True,
|
292 |
-
)
|
293 |
-
|
294 |
-
# Update history
|
295 |
-
current_step_data = {
|
296 |
"image_b64": bot.pil_to_base64(
|
297 |
Image.open(BytesIO(screenshot_bytes))
|
298 |
),
|
299 |
"action": "N/A",
|
300 |
-
"screenshot_bytes": screenshot_bytes,
|
301 |
-
"step_num": step_num,
|
302 |
}
|
303 |
-
history.append(
|
304 |
|
305 |
-
# Think
|
306 |
available_actions = bot.controller.get_available_actions()
|
307 |
history_text = "\n".join(
|
308 |
[f"Step {j + 1}: {h['action']}" for j, h in enumerate(history[:-1])]
|
309 |
)
|
310 |
if not history_text:
|
311 |
-
history_text = "
|
312 |
|
313 |
prompt = AGENT_PROMPT_TEMPLATE.format(
|
314 |
remaining_steps=steps_per_sample - step,
|
@@ -316,150 +136,92 @@ if start_button:
|
|
316 |
available_actions=json.dumps(available_actions),
|
317 |
)
|
318 |
|
319 |
-
# Show what AI is considering
|
320 |
-
with reasoning_placeholder:
|
321 |
-
st.info("π§ **AI is analyzing the situation...**")
|
322 |
-
with st.expander("π Available Actions", expanded=False):
|
323 |
-
st.json(available_actions)
|
324 |
-
|
325 |
-
# Only show context if there's meaningful history
|
326 |
-
if len(history) > 1:
|
327 |
-
with st.expander("π Previous Steps", expanded=False):
|
328 |
-
for j, h in enumerate(history[:-1]):
|
329 |
-
st.write(f"Step {j + 1}: {h.get('action', 'N/A')}")
|
330 |
-
|
331 |
message = bot._create_message_with_history(
|
332 |
prompt, [h["image_b64"] for h in history]
|
333 |
)
|
334 |
-
|
335 |
-
# Get AI response
|
336 |
response = bot.model.invoke(message)
|
337 |
decision = bot._parse_agent_response(response)
|
338 |
|
339 |
-
if not decision:
|
340 |
decision = {
|
341 |
"action_details": {"action": "PAN_RIGHT"},
|
342 |
-
"reasoning": "
|
343 |
}
|
344 |
|
345 |
action = decision.get("action_details", {}).get("action")
|
346 |
history[-1]["action"] = action
|
347 |
-
history[-1]["reasoning"] = decision.get("reasoning", "N/A")
|
348 |
|
349 |
-
|
350 |
-
|
351 |
|
352 |
with action_placeholder:
|
353 |
-
st.
|
|
|
354 |
|
355 |
-
# Show reasoning in expandable section
|
356 |
-
with st.expander("π§ AI's Reasoning", expanded=True):
|
357 |
-
st.info(decision.get("reasoning", "N/A"))
|
358 |
-
|
359 |
-
if action == "GUESS":
|
360 |
-
lat = decision.get("action_details", {}).get("lat")
|
361 |
-
lon = decision.get("action_details", {}).get("lon")
|
362 |
-
if lat and lon:
|
363 |
-
st.success(f"π **Final Guess:** {lat:.4f}, {lon:.4f}")
|
364 |
-
|
365 |
-
# Force a GUESS on the last step
|
366 |
if step_num == steps_per_sample and action != "GUESS":
|
367 |
-
st.warning("β° Max steps reached. Forcing a GUESS action.")
|
368 |
action = "GUESS"
|
369 |
|
370 |
-
# Act
|
371 |
if action == "GUESS":
|
372 |
-
lat
|
373 |
-
|
374 |
-
decision.get("action_details", {}).get("lon"),
|
375 |
-
)
|
376 |
if lat is not None and lon is not None:
|
377 |
final_guess = (lat, lon)
|
378 |
-
|
379 |
-
st.error(
|
380 |
-
"β GUESS action was missing coordinates. Guess failed for this sample."
|
381 |
-
)
|
382 |
-
break # End exploration for the current sample
|
383 |
-
|
384 |
elif action == "MOVE_FORWARD":
|
385 |
-
|
386 |
-
bot.controller.move("forward")
|
387 |
elif action == "MOVE_BACKWARD":
|
388 |
-
|
389 |
-
bot.controller.move("backward")
|
390 |
elif action == "PAN_LEFT":
|
391 |
-
|
392 |
-
bot.controller.pan_view("left")
|
393 |
elif action == "PAN_RIGHT":
|
394 |
-
|
395 |
-
bot.controller.pan_view("right")
|
396 |
|
397 |
-
time.sleep(1)
|
398 |
|
399 |
-
|
400 |
-
|
401 |
-
|
|
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
res_col3.metric(
|
423 |
-
"Distance Error",
|
424 |
-
f"{distance_km:.1f} km" if distance_km is not None else "N/A",
|
425 |
-
delta=f"{'Success' if is_success else 'Failure'}",
|
426 |
-
delta_color=("inverse" if is_success else "off"),
|
427 |
)
|
428 |
-
else:
|
429 |
-
st.error("Agent failed to make a final guess.")
|
430 |
-
|
431 |
-
all_results.append(
|
432 |
-
{
|
433 |
-
"sample_id": sample_id,
|
434 |
-
"model": model_choice,
|
435 |
-
"true_coordinates": true_coords,
|
436 |
-
"predicted_coordinates": final_guess,
|
437 |
-
"distance_km": distance_km,
|
438 |
-
"success": is_success,
|
439 |
-
}
|
440 |
-
)
|
441 |
-
|
442 |
-
# Update overall progress bar
|
443 |
-
overall_progress_bar.progress(
|
444 |
-
(i + 1) / num_samples_to_run,
|
445 |
-
text=f"Overall Progress: {i + 1}/{num_samples_to_run}",
|
446 |
-
)
|
447 |
-
|
448 |
-
# --- End of all samples, display final summary ---
|
449 |
-
bot.close() # Close the browser
|
450 |
-
st.divider()
|
451 |
-
st.header("π Benchmark Summary")
|
452 |
|
|
|
|
|
|
|
|
|
|
|
453 |
summary = benchmark_helper.generate_summary(all_results)
|
454 |
if summary and model_choice in summary:
|
455 |
stats = summary[model_choice]
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
)
|
460 |
-
sum_col2.metric(
|
461 |
-
"Average Distance Error", f"{stats.get('average_distance_km', 0):.1f} km"
|
462 |
-
)
|
463 |
-
st.dataframe(all_results) # Display the detailed results table
|
464 |
-
else:
|
465 |
-
st.warning("Not enough results to generate a summary.")
|
|
|
4 |
import time
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
+
from geo_bot import GeoBot, AGENT_PROMPT_TEMPLATE
|
|
|
|
|
|
|
|
|
|
|
10 |
from benchmark import MapGuesserBenchmark
|
11 |
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
|
12 |
from langchain_openai import ChatOpenAI
|
13 |
from langchain_anthropic import ChatAnthropic
|
14 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
15 |
from hf_chat import HuggingFaceChat
|
16 |
|
17 |
+
# Simple API key setup
|
18 |
+
if "OPENAI_API_KEY" in st.secrets:
|
19 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
|
20 |
+
if "ANTHROPIC_API_KEY" in st.secrets:
|
21 |
+
os.environ["ANTHROPIC_API_KEY"] = st.secrets["ANTHROPIC_API_KEY"]
|
22 |
+
if "GOOGLE_API_KEY" in st.secrets:
|
23 |
+
os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
|
24 |
+
if "HF_TOKEN" in st.secrets:
|
25 |
+
os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def get_available_datasets():
|
|
|
29 |
datasets_dir = Path("datasets")
|
30 |
if not datasets_dir.exists():
|
31 |
return ["default"]
|
|
|
32 |
datasets = []
|
33 |
for dataset_dir in datasets_dir.iterdir():
|
34 |
if dataset_dir.is_dir():
|
35 |
+
data_paths = get_data_paths(dataset_dir.name)
|
|
|
36 |
if os.path.exists(data_paths["golden_labels"]):
|
37 |
+
datasets.append(dataset_dir.name)
|
|
|
38 |
return datasets if datasets else ["default"]
|
39 |
|
40 |
|
41 |
+
def get_model_class(class_name):
|
|
|
|
|
42 |
if class_name == "ChatOpenAI":
|
43 |
return ChatOpenAI
|
44 |
elif class_name == "ChatAnthropic":
|
|
|
51 |
raise ValueError(f"Unknown model class: {class_name}")
|
52 |
|
53 |
|
54 |
+
# UI Setup
|
55 |
st.set_page_config(page_title="MapCrunch AI Agent", layout="wide")
|
56 |
st.title("πΊοΈ MapCrunch AI Agent")
|
|
|
|
|
|
|
57 |
|
58 |
+
# Sidebar
|
|
|
|
|
|
|
|
|
59 |
with st.sidebar:
|
60 |
+
st.header("βοΈ Configuration")
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
dataset_choice = st.selectbox("Dataset", get_available_datasets())
|
63 |
+
model_choice = st.selectbox("Model", list(MODELS_CONFIG.keys()))
|
64 |
+
steps_per_sample = st.slider("Max Steps", 3, 20, 10)
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Load dataset
|
67 |
+
data_paths = get_data_paths(dataset_choice)
|
68 |
+
with open(data_paths["golden_labels"], "r") as f:
|
69 |
+
golden_labels = json.load(f).get("samples", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
st.info(f"Dataset has {len(golden_labels)} samples")
|
72 |
+
num_samples = st.slider(
|
73 |
+
"Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
|
74 |
)
|
75 |
|
76 |
+
start_button = st.button("π Start", type="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Main Logic
|
79 |
if start_button:
|
80 |
+
test_samples = golden_labels[:num_samples]
|
81 |
+
config = MODELS_CONFIG[model_choice]
|
82 |
+
model_class = get_model_class(config["class"])
|
83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
|
85 |
all_results = []
|
86 |
|
87 |
+
progress_bar = st.progress(0)
|
|
|
|
|
88 |
|
89 |
+
with GeoBot(
|
90 |
+
model=model_class, model_name=config["model_name"], headless=True
|
91 |
+
) as bot:
|
92 |
+
for i, sample in enumerate(test_samples):
|
93 |
+
st.divider()
|
94 |
+
st.header(f"Sample {i + 1}/{num_samples}")
|
95 |
|
96 |
+
bot.controller.load_location_from_data(sample)
|
97 |
+
bot.controller.setup_clean_environment()
|
98 |
+
|
99 |
+
col1, col2 = st.columns([2, 3])
|
100 |
+
|
101 |
+
with col1:
|
102 |
+
image_placeholder = st.empty()
|
103 |
+
with col2:
|
104 |
+
reasoning_placeholder = st.empty()
|
105 |
+
action_placeholder = st.empty()
|
106 |
+
|
107 |
+
history = []
|
108 |
+
final_guess = None
|
109 |
+
|
110 |
+
for step in range(steps_per_sample):
|
111 |
+
step_num = step + 1
|
112 |
+
reasoning_placeholder.info(f"π€ Step {step_num}/{steps_per_sample}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
114 |
bot.controller.label_arrows_on_screen()
|
115 |
screenshot_bytes = bot.controller.take_street_view_screenshot()
|
116 |
+
image_placeholder.image(screenshot_bytes, caption=f"Step {step_num}")
|
117 |
|
118 |
+
current_step = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
"image_b64": bot.pil_to_base64(
|
120 |
Image.open(BytesIO(screenshot_bytes))
|
121 |
),
|
122 |
"action": "N/A",
|
|
|
|
|
123 |
}
|
124 |
+
history.append(current_step)
|
125 |
|
|
|
126 |
available_actions = bot.controller.get_available_actions()
|
127 |
history_text = "\n".join(
|
128 |
[f"Step {j + 1}: {h['action']}" for j, h in enumerate(history[:-1])]
|
129 |
)
|
130 |
if not history_text:
|
131 |
+
history_text = "First step."
|
132 |
|
133 |
prompt = AGENT_PROMPT_TEMPLATE.format(
|
134 |
remaining_steps=steps_per_sample - step,
|
|
|
136 |
available_actions=json.dumps(available_actions),
|
137 |
)
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
message = bot._create_message_with_history(
|
140 |
prompt, [h["image_b64"] for h in history]
|
141 |
)
|
|
|
|
|
142 |
response = bot.model.invoke(message)
|
143 |
decision = bot._parse_agent_response(response)
|
144 |
|
145 |
+
if not decision:
|
146 |
decision = {
|
147 |
"action_details": {"action": "PAN_RIGHT"},
|
148 |
+
"reasoning": "Fallback",
|
149 |
}
|
150 |
|
151 |
action = decision.get("action_details", {}).get("action")
|
152 |
history[-1]["action"] = action
|
|
|
153 |
|
154 |
+
reasoning_placeholder.success("β
Decision Made")
|
155 |
+
action_placeholder.success(f"π― Action: `{action}`")
|
156 |
|
157 |
with action_placeholder:
|
158 |
+
with st.expander("Reasoning"):
|
159 |
+
st.write(decision.get("reasoning", "N/A"))
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
if step_num == steps_per_sample and action != "GUESS":
|
|
|
162 |
action = "GUESS"
|
163 |
|
|
|
164 |
if action == "GUESS":
|
165 |
+
lat = decision.get("action_details", {}).get("lat")
|
166 |
+
lon = decision.get("action_details", {}).get("lon")
|
|
|
|
|
167 |
if lat is not None and lon is not None:
|
168 |
final_guess = (lat, lon)
|
169 |
+
break
|
|
|
|
|
|
|
|
|
|
|
170 |
elif action == "MOVE_FORWARD":
|
171 |
+
bot.controller.move("forward")
|
|
|
172 |
elif action == "MOVE_BACKWARD":
|
173 |
+
bot.controller.move("backward")
|
|
|
174 |
elif action == "PAN_LEFT":
|
175 |
+
bot.controller.pan_view("left")
|
|
|
176 |
elif action == "PAN_RIGHT":
|
177 |
+
bot.controller.pan_view("right")
|
|
|
178 |
|
179 |
+
time.sleep(1)
|
180 |
|
181 |
+
# Results
|
182 |
+
true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
|
183 |
+
distance_km = None
|
184 |
+
is_success = False
|
185 |
|
186 |
+
if final_guess:
|
187 |
+
distance_km = benchmark_helper.calculate_distance(
|
188 |
+
true_coords, final_guess
|
189 |
+
)
|
190 |
+
if distance_km is not None:
|
191 |
+
is_success = distance_km <= SUCCESS_THRESHOLD_KM
|
192 |
+
|
193 |
+
st.subheader("π― Result")
|
194 |
+
col1, col2, col3 = st.columns(3)
|
195 |
+
col1.metric("Guess", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}")
|
196 |
+
col2.metric(
|
197 |
+
"Truth", f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}"
|
198 |
+
)
|
199 |
+
col3.metric(
|
200 |
+
"Distance",
|
201 |
+
f"{distance_km:.1f} km",
|
202 |
+
delta="Success" if is_success else "Failed",
|
203 |
+
)
|
204 |
|
205 |
+
all_results.append(
|
206 |
+
{
|
207 |
+
"sample_id": sample.get("id"),
|
208 |
+
"model": model_choice,
|
209 |
+
"true_coordinates": true_coords,
|
210 |
+
"predicted_coordinates": final_guess,
|
211 |
+
"distance_km": distance_km,
|
212 |
+
"success": is_success,
|
213 |
+
}
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
progress_bar.progress((i + 1) / num_samples)
|
217 |
+
|
218 |
+
# Summary
|
219 |
+
st.divider()
|
220 |
+
st.header("π Summary")
|
221 |
summary = benchmark_helper.generate_summary(all_results)
|
222 |
if summary and model_choice in summary:
|
223 |
stats = summary[model_choice]
|
224 |
+
col1, col2 = st.columns(2)
|
225 |
+
col1.metric("Success Rate", f"{stats.get('success_rate', 0) * 100:.1f}%")
|
226 |
+
col2.metric("Avg Distance", f"{stats.get('average_distance_km', 0):.1f} km")
|
227 |
+
st.dataframe(all_results)
|
|
|
|
|
|
|
|
|
|
|
|
config.py
CHANGED
@@ -31,44 +31,32 @@ MODELS_CONFIG = {
|
|
31 |
"gpt-4o": {
|
32 |
"class": "ChatOpenAI",
|
33 |
"model_name": "gpt-4o",
|
34 |
-
"api_key_env": "OPENAI_API_KEY",
|
35 |
"description": "OpenAI GPT-4o",
|
36 |
},
|
37 |
"gpt-4o-mini": {
|
38 |
"class": "ChatOpenAI",
|
39 |
"model_name": "gpt-4o-mini",
|
40 |
-
"
|
41 |
-
"description": "OpenAI GPT-4o Mini (cheaper)",
|
42 |
},
|
43 |
"claude-3.5-sonnet": {
|
44 |
"class": "ChatAnthropic",
|
45 |
"model_name": "claude-3-5-sonnet-20240620",
|
46 |
-
"api_key_env": "ANTHROPIC_API_KEY",
|
47 |
"description": "Anthropic Claude 3.5 Sonnet",
|
48 |
},
|
49 |
"gemini-1.5-pro": {
|
50 |
"class": "ChatGoogleGenerativeAI",
|
51 |
"model_name": "gemini-1.5-pro-latest",
|
52 |
-
"api_key_env": "GOOGLE_API_KEY",
|
53 |
"description": "Google Gemini 1.5 Pro",
|
54 |
},
|
55 |
-
"
|
56 |
-
"class": "ChatGoogleGenerativeAI",
|
57 |
-
"model_name": "gemini-2.5-pro-preview-06-05",
|
58 |
-
"api_key_env": "GOOGLE_API_KEY",
|
59 |
-
"description": "Google Gemini 2.5 Pro",
|
60 |
-
},
|
61 |
-
"qwen2-vl-72b": {
|
62 |
"class": "HuggingFaceChat",
|
63 |
-
"model_name": "Qwen/Qwen2-VL-
|
64 |
-
"
|
65 |
-
"description": "Qwen2-VL 72B (via HF Inference API)",
|
66 |
},
|
67 |
-
"qwen2-vl-
|
68 |
"class": "HuggingFaceChat",
|
69 |
-
"model_name": "Qwen/Qwen2-VL-
|
70 |
-
"
|
71 |
-
"description": "Qwen2-VL 7B (via HF Inference API)",
|
72 |
},
|
73 |
}
|
74 |
|
|
|
31 |
"gpt-4o": {
|
32 |
"class": "ChatOpenAI",
|
33 |
"model_name": "gpt-4o",
|
|
|
34 |
"description": "OpenAI GPT-4o",
|
35 |
},
|
36 |
"gpt-4o-mini": {
|
37 |
"class": "ChatOpenAI",
|
38 |
"model_name": "gpt-4o-mini",
|
39 |
+
"description": "OpenAI GPT-4o Mini",
|
|
|
40 |
},
|
41 |
"claude-3.5-sonnet": {
|
42 |
"class": "ChatAnthropic",
|
43 |
"model_name": "claude-3-5-sonnet-20240620",
|
|
|
44 |
"description": "Anthropic Claude 3.5 Sonnet",
|
45 |
},
|
46 |
"gemini-1.5-pro": {
|
47 |
"class": "ChatGoogleGenerativeAI",
|
48 |
"model_name": "gemini-1.5-pro-latest",
|
|
|
49 |
"description": "Google Gemini 1.5 Pro",
|
50 |
},
|
51 |
+
"qwen2.5-vl-7b": {
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"class": "HuggingFaceChat",
|
53 |
+
"model_name": "Qwen/Qwen2.5-VL-7B-Instruct",
|
54 |
+
"description": "Qwen2.5-VL 7B Vision-Language",
|
|
|
55 |
},
|
56 |
+
"qwen2.5-vl-3b": {
|
57 |
"class": "HuggingFaceChat",
|
58 |
+
"model_name": "Qwen/Qwen2.5-VL-3B-Instruct",
|
59 |
+
"description": "Qwen2.5-VL 3B Vision-Language",
|
|
|
60 |
},
|
61 |
}
|
62 |
|
hf_chat.py
CHANGED
@@ -21,9 +21,9 @@ class HuggingFaceChat(BaseChatModel):
|
|
21 |
api_token: Optional[str] = Field(default=None, description="HF API token")
|
22 |
|
23 |
def __init__(self, model: str, temperature: float = 0.0, **kwargs):
|
24 |
-
api_token = kwargs.get("api_token") or os.getenv("
|
25 |
if not api_token:
|
26 |
-
raise ValueError("
|
27 |
|
28 |
super().__init__(
|
29 |
model=model, temperature=temperature, api_token=api_token, **kwargs
|
|
|
21 |
api_token: Optional[str] = Field(default=None, description="HF API token")
|
22 |
|
23 |
def __init__(self, model: str, temperature: float = 0.0, **kwargs):
|
24 |
+
api_token = kwargs.get("api_token") or os.getenv("HF_TOKEN")
|
25 |
if not api_token:
|
26 |
+
raise ValueError("HF_TOKEN environment variable is required")
|
27 |
|
28 |
super().__init__(
|
29 |
model=model, temperature=temperature, api_token=api_token, **kwargs
|