Spaces:
Building
Building
Andy Lee
commited on
Commit
·
fc23f51
1
Parent(s):
f22dc3b
feat: support qwen and openrouters
Browse files
app.py
CHANGED
@@ -8,11 +8,8 @@ from pathlib import Path
|
|
8 |
|
9 |
from geo_bot import GeoBot, AGENT_PROMPT_TEMPLATE
|
10 |
from benchmark import MapGuesserBenchmark
|
11 |
-
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
|
12 |
-
|
13 |
-
from langchain_anthropic import ChatAnthropic
|
14 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
15 |
-
from hf_chat import HuggingFaceChat
|
16 |
|
17 |
# Simple API key setup
|
18 |
if "OPENAI_API_KEY" in st.secrets:
|
@@ -38,19 +35,6 @@ def get_available_datasets():
|
|
38 |
return datasets if datasets else ["default"]
|
39 |
|
40 |
|
41 |
-
def get_model_class(class_name):
|
42 |
-
if class_name == "ChatOpenAI":
|
43 |
-
return ChatOpenAI
|
44 |
-
elif class_name == "ChatAnthropic":
|
45 |
-
return ChatAnthropic
|
46 |
-
elif class_name == "ChatGoogleGenerativeAI":
|
47 |
-
return ChatGoogleGenerativeAI
|
48 |
-
elif class_name == "HuggingFaceChat":
|
49 |
-
return HuggingFaceChat
|
50 |
-
else:
|
51 |
-
raise ValueError(f"Unknown model class: {class_name}")
|
52 |
-
|
53 |
-
|
54 |
# UI Setup
|
55 |
st.set_page_config(page_title="🧠 Omniscient - AI Geographic Analysis", layout="wide")
|
56 |
st.title("🧠 Omniscient")
|
|
|
8 |
|
9 |
from geo_bot import GeoBot, AGENT_PROMPT_TEMPLATE
|
10 |
from benchmark import MapGuesserBenchmark
|
11 |
+
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM, get_model_class
|
12 |
+
|
|
|
|
|
|
|
13 |
|
14 |
# Simple API key setup
|
15 |
if "OPENAI_API_KEY" in st.secrets:
|
|
|
35 |
return datasets if datasets else ["default"]
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# UI Setup
|
39 |
st.set_page_config(page_title="🧠 Omniscient - AI Geographic Analysis", layout="wide")
|
40 |
st.title("🧠 Omniscient")
|
benchmark.py
CHANGED
@@ -9,7 +9,7 @@ from pathlib import Path
|
|
9 |
import math
|
10 |
|
11 |
from geo_bot import GeoBot
|
12 |
-
from config import get_data_paths, MODELS_CONFIG, SUCCESS_THRESHOLD_KM
|
13 |
|
14 |
|
15 |
class MapGuesserBenchmark:
|
@@ -29,25 +29,6 @@ class MapGuesserBenchmark:
|
|
29 |
except Exception:
|
30 |
return []
|
31 |
|
32 |
-
def get_model_class(self, model_name: str):
|
33 |
-
config = MODELS_CONFIG.get(model_name)
|
34 |
-
if not config:
|
35 |
-
raise ValueError(f"Unknown model: {model_name}")
|
36 |
-
class_name, model_class_name = config["class"], config["model_name"]
|
37 |
-
if class_name == "ChatOpenAI":
|
38 |
-
from langchain_openai import ChatOpenAI
|
39 |
-
|
40 |
-
return ChatOpenAI, model_class_name
|
41 |
-
if class_name == "ChatAnthropic":
|
42 |
-
from langchain_anthropic import ChatAnthropic
|
43 |
-
|
44 |
-
return ChatAnthropic, model_class_name
|
45 |
-
if class_name == "ChatGoogleGenerativeAI":
|
46 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
47 |
-
|
48 |
-
return ChatGoogleGenerativeAI, model_class_name
|
49 |
-
raise ValueError(f"Unknown model class: {class_name}")
|
50 |
-
|
51 |
def calculate_distance(
|
52 |
self, true_coords: Dict, predicted_coords: Optional[Tuple[float, float]]
|
53 |
) -> Optional[float]:
|
@@ -99,7 +80,9 @@ class MapGuesserBenchmark:
|
|
99 |
all_results = []
|
100 |
for model_name in models_to_test:
|
101 |
print(f"\n🤖 Testing model: {model_name}")
|
102 |
-
|
|
|
|
|
103 |
|
104 |
try:
|
105 |
with GeoBot(
|
|
|
9 |
import math
|
10 |
|
11 |
from geo_bot import GeoBot
|
12 |
+
from config import get_data_paths, MODELS_CONFIG, SUCCESS_THRESHOLD_KM, get_model_class
|
13 |
|
14 |
|
15 |
class MapGuesserBenchmark:
|
|
|
29 |
except Exception:
|
30 |
return []
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def calculate_distance(
|
33 |
self, true_coords: Dict, predicted_coords: Optional[Tuple[float, float]]
|
34 |
) -> Optional[float]:
|
|
|
80 |
all_results = []
|
81 |
for model_name in models_to_test:
|
82 |
print(f"\n🤖 Testing model: {model_name}")
|
83 |
+
model_config = MODELS_CONFIG[model_name]
|
84 |
+
model_class = get_model_class(model_config["class"])
|
85 |
+
model_class_name = model_config["model_name"]
|
86 |
|
87 |
try:
|
88 |
with GeoBot(
|
config.py
CHANGED
@@ -1,5 +1,10 @@
|
|
1 |
# Configuration file for MapCrunch benchmark
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
SUCCESS_THRESHOLD_KM = 100
|
4 |
|
5 |
# MapCrunch settings
|
@@ -38,10 +43,15 @@ MODELS_CONFIG = {
|
|
38 |
"model_name": "gpt-4o-mini",
|
39 |
"description": "OpenAI GPT-4o Mini",
|
40 |
},
|
41 |
-
"claude-3
|
|
|
|
|
|
|
|
|
|
|
42 |
"class": "ChatAnthropic",
|
43 |
-
"model_name": "claude-
|
44 |
-
"description": "Anthropic Claude
|
45 |
},
|
46 |
"gemini-1.5-pro": {
|
47 |
"class": "ChatGoogleGenerativeAI",
|
@@ -58,19 +68,76 @@ MODELS_CONFIG = {
|
|
58 |
"model_name": "gemini-2.5-pro-preview-06-05",
|
59 |
"description": "Google Gemini 2.5 Pro",
|
60 |
},
|
61 |
-
"
|
62 |
-
"class": "
|
63 |
-
"model_name": "
|
64 |
-
"description": "
|
65 |
},
|
66 |
-
"qwen2-vl-
|
67 |
-
"class": "
|
68 |
-
"model_name": "
|
69 |
-
"description": "Qwen2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
},
|
71 |
}
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Data paths - now supports named datasets
|
75 |
def get_data_paths(dataset_name: str = "default"):
|
76 |
"""Get data paths for a specific dataset"""
|
|
|
1 |
# Configuration file for MapCrunch benchmark
|
2 |
|
3 |
+
from pydantic import SecretStr, Field
|
4 |
+
from typing import Optional
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
SUCCESS_THRESHOLD_KM = 100
|
9 |
|
10 |
# MapCrunch settings
|
|
|
43 |
"model_name": "gpt-4o-mini",
|
44 |
"description": "OpenAI GPT-4o Mini",
|
45 |
},
|
46 |
+
"claude-3-7-sonnet": {
|
47 |
+
"class": "ChatAnthropic",
|
48 |
+
"model_name": "claude-3-7-sonnet-20250219",
|
49 |
+
"description": "Anthropic Claude 3.7 Sonnet",
|
50 |
+
},
|
51 |
+
"claude-4-sonnet": {
|
52 |
"class": "ChatAnthropic",
|
53 |
+
"model_name": "claude-4-sonnet-20250514",
|
54 |
+
"description": "Anthropic Claude 4 Sonnet",
|
55 |
},
|
56 |
"gemini-1.5-pro": {
|
57 |
"class": "ChatGoogleGenerativeAI",
|
|
|
68 |
"model_name": "gemini-2.5-pro-preview-06-05",
|
69 |
"description": "Google Gemini 2.5 Pro",
|
70 |
},
|
71 |
+
"qwen-vl-max": {
|
72 |
+
"class": "OpenRouter",
|
73 |
+
"model_name": "qwen/qwen-vl-max",
|
74 |
+
"description": "Qwen VL Max - OpenRouter (Best Performance)",
|
75 |
},
|
76 |
+
"qwen2.5-vl-32b-free": {
|
77 |
+
"class": "OpenRouter",
|
78 |
+
"model_name": "qwen/qwen2.5-vl-32b-instruct:free",
|
79 |
+
"description": "Qwen2.5 VL 32B - OpenRouter (FREE!)",
|
80 |
+
},
|
81 |
+
"qwen2.5-vl-7b": {
|
82 |
+
"class": "OpenRouter",
|
83 |
+
"model_name": "qwen/qwen2.5-vl-7b-instruct",
|
84 |
+
"description": "Qwen2.5 VL 7B - OpenRouter",
|
85 |
+
},
|
86 |
+
"qwen2.5-vl-3b": {
|
87 |
+
"class": "OpenRouter",
|
88 |
+
"model_name": "qwen/qwen2.5-vl-3b-instruct",
|
89 |
+
"description": "Qwen2.5 VL 3B - OpenRouter (Fastest)",
|
90 |
},
|
91 |
}
|
92 |
|
93 |
|
94 |
+
def get_model_class(class_name):
|
95 |
+
"""Get actual model class from string name"""
|
96 |
+
if class_name == "ChatOpenAI":
|
97 |
+
from langchain_openai import ChatOpenAI
|
98 |
+
|
99 |
+
return ChatOpenAI
|
100 |
+
elif class_name == "ChatAnthropic":
|
101 |
+
from langchain_anthropic import ChatAnthropic
|
102 |
+
|
103 |
+
return ChatAnthropic
|
104 |
+
elif class_name == "ChatGoogleGenerativeAI":
|
105 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
106 |
+
|
107 |
+
return ChatGoogleGenerativeAI
|
108 |
+
elif class_name == "HuggingFaceChat":
|
109 |
+
from hf_chat import HuggingFaceChat
|
110 |
+
|
111 |
+
return HuggingFaceChat
|
112 |
+
elif class_name == "OpenRouter":
|
113 |
+
from langchain_openai import ChatOpenAI
|
114 |
+
from langchain_core.utils.utils import secret_from_env
|
115 |
+
|
116 |
+
# LangChain does not support OpenRouter directly, so we need to create a custom class
|
117 |
+
# See https://github.com/langchain-ai/langchain/discussions/27964.
|
118 |
+
class ChatOpenRouter(ChatOpenAI):
|
119 |
+
openai_api_key: Optional[SecretStr] = Field(
|
120 |
+
alias="api_key",
|
121 |
+
default_factory=secret_from_env("OPENROUTER_API_KEY", default=None),
|
122 |
+
)
|
123 |
+
|
124 |
+
@property
|
125 |
+
def lc_secrets(self) -> dict[str, str]:
|
126 |
+
return {"openai_api_key": "OPENROUTER_API_KEY"}
|
127 |
+
|
128 |
+
def __init__(self, openai_api_key: Optional[str] = None, **kwargs):
|
129 |
+
openai_api_key = openai_api_key or os.environ.get("OPENROUTER_API_KEY")
|
130 |
+
super().__init__(
|
131 |
+
base_url="https://openrouter.ai/api/v1",
|
132 |
+
api_key=SecretStr(openai_api_key) if openai_api_key else None,
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
|
136 |
+
return ChatOpenRouter
|
137 |
+
else:
|
138 |
+
raise ValueError(f"Unknown model class: {class_name}")
|
139 |
+
|
140 |
+
|
141 |
# Data paths - now supports named datasets
|
142 |
def get_data_paths(dataset_name: str = "default"):
|
143 |
"""Get data paths for a specific dataset"""
|
main.py
CHANGED
@@ -10,7 +10,7 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
10 |
from geo_bot import GeoBot
|
11 |
from benchmark import MapGuesserBenchmark
|
12 |
from data_collector import DataCollector
|
13 |
-
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
|
14 |
|
15 |
|
16 |
def agent_mode(
|
@@ -48,7 +48,7 @@ def agent_mode(
|
|
48 |
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
|
49 |
|
50 |
config = MODELS_CONFIG.get(model_name)
|
51 |
-
model_class =
|
52 |
model_instance_name = config["model_name"]
|
53 |
|
54 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
|
|
|
10 |
from geo_bot import GeoBot
|
11 |
from benchmark import MapGuesserBenchmark
|
12 |
from data_collector import DataCollector
|
13 |
+
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM, get_model_class
|
14 |
|
15 |
|
16 |
def agent_mode(
|
|
|
48 |
print(f"Will run on {len(test_samples)} samples from dataset '{dataset_name}'.")
|
49 |
|
50 |
config = MODELS_CONFIG.get(model_name)
|
51 |
+
model_class = get_model_class(config["class"])
|
52 |
model_instance_name = config["model_name"]
|
53 |
|
54 |
benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_name, headless=True)
|