Upload 2 files
Browse files- app.py +50 -0
- utils/matcher.py +12 -0
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
from utils.matcher import oversaet_fuzzy
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
processor = AutoImageProcessor.from_pretrained("timm/food101-vit-base-patch16-224")
|
12 |
+
model = AutoModelForImageClassification.from_pretrained("timm/food101-vit-base-patch16-224")
|
13 |
+
return processor, model
|
14 |
+
|
15 |
+
processor, model = load_model()
|
16 |
+
|
17 |
+
st.title("Kalorieestimat og Fødevareklassificering")
|
18 |
+
uploaded_file = st.file_uploader("Upload et billede", type=["jpg", "jpeg", "png"])
|
19 |
+
confidence_threshold = 0.7
|
20 |
+
|
21 |
+
if uploaded_file is not None:
|
22 |
+
image = Image.open(uploaded_file).convert("RGB")
|
23 |
+
st.image(image, caption="Uploadet billede", use_column_width=True)
|
24 |
+
|
25 |
+
inputs = processor(images=image, return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
logits = outputs.logits
|
29 |
+
predicted_class_idx = logits.argmax(-1).item()
|
30 |
+
confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item()
|
31 |
+
|
32 |
+
label = model.config.id2label[predicted_class_idx]
|
33 |
+
label_dk = oversaet_fuzzy(label)
|
34 |
+
|
35 |
+
st.markdown(f"**Modelgæt:** {label} ({confidence*100:.1f}%)")
|
36 |
+
st.markdown(f"**Oversat (fuzzy):** {label_dk}")
|
37 |
+
|
38 |
+
if confidence < confidence_threshold:
|
39 |
+
manual = st.selectbox("Modellen er usikker – vælg manuelt fødevaretype:", options=["æg", "kartofler", "smør", "broccoli"])
|
40 |
+
st.markdown(f"**Manuelt valg:** {manual}")
|
41 |
+
|
42 |
+
feedback = st.text_input("Har du feedback eller en mere præcis betegnelse?")
|
43 |
+
if feedback:
|
44 |
+
st.success("Tak for din feedback!")
|
45 |
+
|
46 |
+
st.subheader("Eksempel på fødevareanalyse:")
|
47 |
+
st.markdown("- 100 g æg
|
48 |
+
- 200 g kartofler
|
49 |
+
- 50 g smør
|
50 |
+
- 25 g broccoli")
|
utils/matcher.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def oversaet_fuzzy(label):
|
3 |
+
oversaettelser = {
|
4 |
+
"mashed_potato": "kartoffelmos",
|
5 |
+
"omelette": "æg",
|
6 |
+
"broccoli": "broccoli",
|
7 |
+
"butter": "smør",
|
8 |
+
"french_fries": "pommes frites",
|
9 |
+
"pizza": "pizza",
|
10 |
+
"sushi": "sushi"
|
11 |
+
}
|
12 |
+
return oversaettelser.get(label.lower(), f"(ukendt: {label})")
|