Spaces:
Running
Running
update
Browse files
NN_classifier/neural_net_t.py
ADDED
|
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
from torch.utils.data import DataLoader, TensorDataset
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
from sklearn.metrics import classification_report, accuracy_score
|
| 9 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 10 |
+
from sklearn.impute import SimpleImputer
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import json
|
| 13 |
+
import joblib
|
| 14 |
+
import os
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
from sklearn.model_selection import StratifiedKFold
|
| 17 |
+
from scipy import stats
|
| 18 |
+
import time
|
| 19 |
+
import argparse
|
| 20 |
+
|
| 21 |
+
def setup_gpu():
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
return True
|
| 24 |
+
else:
|
| 25 |
+
print("No GPUs found. Using CPU.")
|
| 26 |
+
return False
|
| 27 |
+
|
| 28 |
+
GPU_AVAILABLE = setup_gpu()
|
| 29 |
+
DEVICE = torch.device('cuda' if GPU_AVAILABLE else 'cpu')
|
| 30 |
+
|
| 31 |
+
def load_data_from_json(directory_path):
|
| 32 |
+
if os.path.isfile(directory_path):
|
| 33 |
+
directory = os.path.dirname(directory_path)
|
| 34 |
+
else:
|
| 35 |
+
directory = directory_path
|
| 36 |
+
|
| 37 |
+
print(f"Loading JSON files from directory: {directory}")
|
| 38 |
+
|
| 39 |
+
json_files = [os.path.join(directory, f) for f in os.listdir(directory)
|
| 40 |
+
if f.endswith('.json') and os.path.isfile(os.path.join(directory, f))]
|
| 41 |
+
|
| 42 |
+
if not json_files:
|
| 43 |
+
raise ValueError(f"No JSON files found in directory {directory}")
|
| 44 |
+
|
| 45 |
+
print(f"Found {len(json_files)} JSON files")
|
| 46 |
+
|
| 47 |
+
all_data = []
|
| 48 |
+
for file_path in json_files:
|
| 49 |
+
try:
|
| 50 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 51 |
+
data_dict = json.load(f)
|
| 52 |
+
if 'data' in data_dict:
|
| 53 |
+
all_data.extend(data_dict['data'])
|
| 54 |
+
else:
|
| 55 |
+
print(f"Warning: 'data' key not found in {os.path.basename(file_path)}")
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Error loading {os.path.basename(file_path)}: {str(e)}")
|
| 58 |
+
|
| 59 |
+
if not all_data:
|
| 60 |
+
raise ValueError("Failed to load data from JSON files")
|
| 61 |
+
|
| 62 |
+
df = pd.DataFrame(all_data)
|
| 63 |
+
|
| 64 |
+
label_mapping = {
|
| 65 |
+
'ai': 'Raw AI',
|
| 66 |
+
'human': 'Human',
|
| 67 |
+
'ai+rew': 'Rephrased AI'
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
if 'source' in df.columns:
|
| 71 |
+
df['label'] = df['source'].map(lambda x: label_mapping.get(x, x))
|
| 72 |
+
else:
|
| 73 |
+
print("Warning: 'source' column not found, using default label")
|
| 74 |
+
df['label'] = 'Unknown'
|
| 75 |
+
|
| 76 |
+
return df
|
| 77 |
+
|
| 78 |
+
class Neural_Network(nn.Module):
|
| 79 |
+
def __init__(self, input_size, hidden_layers, num_classes, dropout_rate=0.2):
|
| 80 |
+
super(Neural_Network, self).__init__()
|
| 81 |
+
|
| 82 |
+
layers = []
|
| 83 |
+
prev_size = input_size
|
| 84 |
+
|
| 85 |
+
for hidden_size in hidden_layers:
|
| 86 |
+
layers.append(nn.Linear(prev_size, hidden_size))
|
| 87 |
+
layers.append(nn.ReLU())
|
| 88 |
+
layers.append(nn.Dropout(dropout_rate))
|
| 89 |
+
prev_size = hidden_size
|
| 90 |
+
|
| 91 |
+
layers.append(nn.Linear(prev_size, num_classes))
|
| 92 |
+
self.model = nn.Sequential(*layers)
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
return self.model(x)
|
| 96 |
+
|
| 97 |
+
def build_neural_network(input_shape, num_classes, hidden_layers=[64, 32]):
|
| 98 |
+
model = Neural_Network(input_shape, hidden_layers, num_classes).to(DEVICE)
|
| 99 |
+
print(f"Model created with hidden layers {hidden_layers} on device: {DEVICE}")
|
| 100 |
+
return model
|
| 101 |
+
|
| 102 |
+
def plot_learning_curve(train_losses, val_losses):
|
| 103 |
+
plt.figure(figsize=(10, 6))
|
| 104 |
+
epochs = range(1, len(train_losses) + 1)
|
| 105 |
+
|
| 106 |
+
plt.plot(epochs, train_losses, 'b-', label='Training Loss')
|
| 107 |
+
plt.plot(epochs, val_losses, 'r-', label='Validation Loss')
|
| 108 |
+
|
| 109 |
+
plt.title('Learning Curve')
|
| 110 |
+
plt.xlabel('Epochs')
|
| 111 |
+
plt.ylabel('Loss')
|
| 112 |
+
plt.legend()
|
| 113 |
+
plt.grid(True)
|
| 114 |
+
|
| 115 |
+
os.makedirs('plots', exist_ok=True)
|
| 116 |
+
plt.savefig('plots/learning_curve.png')
|
| 117 |
+
plt.close()
|
| 118 |
+
print("Learning curve saved to plots/learning_curve.png")
|
| 119 |
+
|
| 120 |
+
def plot_accuracy_curve(train_accuracies, val_accuracies):
|
| 121 |
+
plt.figure(figsize=(10, 6))
|
| 122 |
+
epochs = range(1, len(train_accuracies) + 1)
|
| 123 |
+
|
| 124 |
+
plt.plot(epochs, train_accuracies, 'g-', label='Training Accuracy')
|
| 125 |
+
plt.plot(epochs, val_accuracies, 'm-', label='Validation Accuracy')
|
| 126 |
+
|
| 127 |
+
plt.title('Accuracy Curve')
|
| 128 |
+
plt.xlabel('Epochs')
|
| 129 |
+
plt.ylabel('Accuracy')
|
| 130 |
+
plt.legend()
|
| 131 |
+
plt.grid(True)
|
| 132 |
+
|
| 133 |
+
plt.ylim(0, 1.0)
|
| 134 |
+
|
| 135 |
+
os.makedirs('plots', exist_ok=True)
|
| 136 |
+
plt.savefig('plots/accuracy_curve.png')
|
| 137 |
+
plt.close()
|
| 138 |
+
print("Accuracy curve saved to plots/accuracy_curve.png")
|
| 139 |
+
|
| 140 |
+
def select_features(df, feature_config):
|
| 141 |
+
features_df = pd.DataFrame()
|
| 142 |
+
|
| 143 |
+
if feature_config.get('basic_scores', True):
|
| 144 |
+
if 'score_chat' in df.columns:
|
| 145 |
+
features_df['score_chat'] = df['score_chat']
|
| 146 |
+
if 'score_coder' in df.columns:
|
| 147 |
+
features_df['score_coder'] = df['score_coder']
|
| 148 |
+
|
| 149 |
+
if 'text_analysis' in df.columns:
|
| 150 |
+
if feature_config.get('basic_text_stats'):
|
| 151 |
+
for feature in feature_config['basic_text_stats']:
|
| 152 |
+
features_df[f'basic_{feature}'] = df['text_analysis'].apply(
|
| 153 |
+
lambda x: x.get('basic_stats', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if feature_config.get('morphological'):
|
| 157 |
+
for feature in feature_config['morphological']:
|
| 158 |
+
if feature == 'pos_distribution':
|
| 159 |
+
pos_types = ['NOUN', 'VERB', 'ADJ', 'ADV', 'PROPN', 'DET', 'ADP', 'PRON', 'CCONJ', 'SCONJ']
|
| 160 |
+
for pos in pos_types:
|
| 161 |
+
features_df[f'pos_{pos}'] = df['text_analysis'].apply(
|
| 162 |
+
lambda x: x.get('morphological_analysis', {}).get('pos_distribution', {}).get(pos, 0)
|
| 163 |
+
if isinstance(x, dict) else 0
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
features_df[f'morph_{feature}'] = df['text_analysis'].apply(
|
| 167 |
+
lambda x: x.get('morphological_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
if feature_config.get('syntactic'):
|
| 171 |
+
for feature in feature_config['syntactic']:
|
| 172 |
+
if feature == 'dependencies':
|
| 173 |
+
dep_types = ['nsubj', 'obj', 'amod', 'nmod', 'ROOT', 'punct', 'case']
|
| 174 |
+
for dep in dep_types:
|
| 175 |
+
features_df[f'dep_{dep}'] = df['text_analysis'].apply(
|
| 176 |
+
lambda x: x.get('syntactic_analysis', {}).get('dependencies', {}).get(dep, 0)
|
| 177 |
+
if isinstance(x, dict) else 0
|
| 178 |
+
)
|
| 179 |
+
else:
|
| 180 |
+
features_df[f'synt_{feature}'] = df['text_analysis'].apply(
|
| 181 |
+
lambda x: x.get('syntactic_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if feature_config.get('entities'):
|
| 185 |
+
for feature in feature_config['entities']:
|
| 186 |
+
if feature == 'entity_types':
|
| 187 |
+
entity_types = ['PER', 'LOC', 'ORG']
|
| 188 |
+
for ent in entity_types:
|
| 189 |
+
features_df[f'ent_{ent}'] = df['text_analysis'].apply(
|
| 190 |
+
lambda x: x.get('named_entities', {}).get('entity_types', {}).get(ent, 0)
|
| 191 |
+
if isinstance(x, dict) else 0
|
| 192 |
+
)
|
| 193 |
+
else:
|
| 194 |
+
features_df[f'ent_{feature}'] = df['text_analysis'].apply(
|
| 195 |
+
lambda x: x.get('named_entities', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
if feature_config.get('diversity'):
|
| 199 |
+
for feature in feature_config['diversity']:
|
| 200 |
+
features_df[f'div_{feature}'] = df['text_analysis'].apply(
|
| 201 |
+
lambda x: x.get('lexical_diversity', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
if feature_config.get('structure'):
|
| 205 |
+
for feature in feature_config['structure']:
|
| 206 |
+
features_df[f'struct_{feature}'] = df['text_analysis'].apply(
|
| 207 |
+
lambda x: x.get('text_structure', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if feature_config.get('readability'):
|
| 211 |
+
for feature in feature_config['readability']:
|
| 212 |
+
features_df[f'read_{feature}'] = df['text_analysis'].apply(
|
| 213 |
+
lambda x: x.get('readability', {}).get(feature, 0) if isinstance(x, dict) else 0
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
if feature_config.get('semantic'):
|
| 217 |
+
features_df['semantic_coherence'] = df['text_analysis'].apply(
|
| 218 |
+
lambda x: x.get('semantic_coherence', {}).get('avg_coherence_score', 0) if isinstance(x, dict) else 0
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
print(f"Generated {len(features_df.columns)} features")
|
| 222 |
+
return features_df
|
| 223 |
+
|
| 224 |
+
def train_neural_network(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
|
| 225 |
+
model_config=None,
|
| 226 |
+
feature_config=None,
|
| 227 |
+
random_state=42):
|
| 228 |
+
if model_config is None:
|
| 229 |
+
model_config = {
|
| 230 |
+
'hidden_layers': [128, 96, 64, 32],
|
| 231 |
+
'dropout_rate': 0.1
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
if feature_config is None:
|
| 235 |
+
feature_config = {
|
| 236 |
+
'basic_scores': True,
|
| 237 |
+
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
|
| 238 |
+
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
|
| 239 |
+
'syntactic': ['dependencies', 'noun_chunks'],
|
| 240 |
+
'entities': ['total_entities', 'entity_types'],
|
| 241 |
+
'diversity': ['ttr', 'mtld'],
|
| 242 |
+
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
|
| 243 |
+
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
|
| 244 |
+
'semantic': True
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
df = load_data_from_json(directory_path)
|
| 248 |
+
|
| 249 |
+
features_df = select_features(df, feature_config)
|
| 250 |
+
|
| 251 |
+
print(f"Selected features: {features_df.columns.tolist()}")
|
| 252 |
+
|
| 253 |
+
imputer = SimpleImputer(strategy='mean')
|
| 254 |
+
X = imputer.fit_transform(features_df)
|
| 255 |
+
y = df['label'].values
|
| 256 |
+
|
| 257 |
+
print(f"Final data size after NaN processing: {X.shape}")
|
| 258 |
+
print(f"Labels distribution: {pd.Series(y).value_counts().to_dict()}")
|
| 259 |
+
|
| 260 |
+
label_encoder = LabelEncoder()
|
| 261 |
+
y_encoded = label_encoder.fit_transform(y)
|
| 262 |
+
|
| 263 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 264 |
+
X, y_encoded, test_size=0.2, random_state=random_state
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 268 |
+
X_train, y_train, test_size=0.2, random_state=random_state
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
scaler = StandardScaler()
|
| 272 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
| 273 |
+
X_val_scaled = scaler.transform(X_val)
|
| 274 |
+
X_test_scaled = scaler.transform(X_test)
|
| 275 |
+
|
| 276 |
+
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
|
| 277 |
+
y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
|
| 278 |
+
X_val_tensor = torch.FloatTensor(X_val_scaled).to(DEVICE)
|
| 279 |
+
y_val_tensor = torch.LongTensor(y_val).to(DEVICE)
|
| 280 |
+
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
|
| 281 |
+
|
| 282 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
| 283 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 284 |
+
|
| 285 |
+
num_classes = len(label_encoder.classes_)
|
| 286 |
+
model = build_neural_network(X_train_scaled.shape[1], num_classes,
|
| 287 |
+
hidden_layers=model_config['hidden_layers'])
|
| 288 |
+
|
| 289 |
+
criterion = nn.CrossEntropyLoss()
|
| 290 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 291 |
+
|
| 292 |
+
num_epochs = 100
|
| 293 |
+
best_loss = float('inf')
|
| 294 |
+
patience = 10
|
| 295 |
+
patience_counter = 0
|
| 296 |
+
best_model_state = None
|
| 297 |
+
|
| 298 |
+
train_losses = []
|
| 299 |
+
val_losses = []
|
| 300 |
+
train_accuracies = []
|
| 301 |
+
val_accuracies = []
|
| 302 |
+
|
| 303 |
+
for epoch in range(num_epochs):
|
| 304 |
+
model.train()
|
| 305 |
+
running_loss = 0.0
|
| 306 |
+
correct_train = 0
|
| 307 |
+
total_train = 0
|
| 308 |
+
|
| 309 |
+
for inputs, labels in train_loader:
|
| 310 |
+
optimizer.zero_grad()
|
| 311 |
+
outputs = model(inputs)
|
| 312 |
+
loss = criterion(outputs, labels)
|
| 313 |
+
loss.backward()
|
| 314 |
+
optimizer.step()
|
| 315 |
+
|
| 316 |
+
running_loss += loss.item() * inputs.size(0)
|
| 317 |
+
|
| 318 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 319 |
+
total_train += labels.size(0)
|
| 320 |
+
correct_train += (predicted == labels).sum().item()
|
| 321 |
+
|
| 322 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
| 323 |
+
train_losses.append(epoch_loss)
|
| 324 |
+
|
| 325 |
+
train_accuracy = correct_train / total_train
|
| 326 |
+
train_accuracies.append(train_accuracy)
|
| 327 |
+
|
| 328 |
+
model.eval()
|
| 329 |
+
with torch.no_grad():
|
| 330 |
+
val_outputs = model(X_val_tensor)
|
| 331 |
+
val_loss = criterion(val_outputs, y_val_tensor)
|
| 332 |
+
val_losses.append(val_loss.item())
|
| 333 |
+
|
| 334 |
+
_, predicted_val = torch.max(val_outputs.data, 1)
|
| 335 |
+
val_accuracy = (predicted_val == y_val_tensor).sum().item() / len(y_val_tensor)
|
| 336 |
+
val_accuracies.append(val_accuracy)
|
| 337 |
+
|
| 338 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}, Acc: {train_accuracy:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_accuracy:.4f}")
|
| 339 |
+
|
| 340 |
+
if val_loss < best_loss:
|
| 341 |
+
best_loss = val_loss
|
| 342 |
+
patience_counter = 0
|
| 343 |
+
best_model_state = model.state_dict().copy()
|
| 344 |
+
else:
|
| 345 |
+
patience_counter += 1
|
| 346 |
+
|
| 347 |
+
if patience_counter >= patience:
|
| 348 |
+
print(f"Early stopping at epoch {epoch+1}")
|
| 349 |
+
break
|
| 350 |
+
|
| 351 |
+
plot_learning_curve(train_losses, val_losses)
|
| 352 |
+
plot_accuracy_curve(train_accuracies, val_accuracies)
|
| 353 |
+
|
| 354 |
+
if best_model_state:
|
| 355 |
+
model.load_state_dict(best_model_state)
|
| 356 |
+
|
| 357 |
+
model.eval()
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
y_pred_prob = model(X_test_tensor)
|
| 360 |
+
y_pred = torch.argmax(y_pred_prob, dim=1).cpu().numpy()
|
| 361 |
+
|
| 362 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 363 |
+
print(f"Model accuracy: {accuracy:.6f}")
|
| 364 |
+
|
| 365 |
+
class_names = label_encoder.classes_
|
| 366 |
+
print("\nClassification report:")
|
| 367 |
+
print(classification_report(y_test, y_pred, target_names=class_names))
|
| 368 |
+
|
| 369 |
+
return model, scaler, label_encoder, accuracy
|
| 370 |
+
|
| 371 |
+
def save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network'):
|
| 372 |
+
if not os.path.exists(output_dir):
|
| 373 |
+
os.makedirs(output_dir)
|
| 374 |
+
|
| 375 |
+
model_path = os.path.join(output_dir, 'nn_model.pt')
|
| 376 |
+
torch.save(model.state_dict(), model_path)
|
| 377 |
+
|
| 378 |
+
scaler_path = os.path.join(output_dir, 'scaler.joblib')
|
| 379 |
+
joblib.dump(scaler, scaler_path)
|
| 380 |
+
|
| 381 |
+
encoder_path = os.path.join(output_dir, 'label_encoder.joblib')
|
| 382 |
+
joblib.dump(label_encoder, encoder_path)
|
| 383 |
+
|
| 384 |
+
imputer_path = os.path.join(output_dir, 'imputer.joblib')
|
| 385 |
+
joblib.dump(imputer, imputer_path)
|
| 386 |
+
|
| 387 |
+
print(f"Model saved to {model_path}")
|
| 388 |
+
print(f"Scaler saved to {scaler_path}")
|
| 389 |
+
print(f"Label encoder saved to {encoder_path}")
|
| 390 |
+
print(f"Imputer saved to {imputer_path}")
|
| 391 |
+
|
| 392 |
+
return model_path, scaler_path, encoder_path, imputer_path
|
| 393 |
+
|
| 394 |
+
def evaluate_statistical_significance(X, y, model_config, scaler, label_encoder, cv=5, random_state=42, cv_epochs=15):
|
| 395 |
+
print("Starting statistical significance evaluation...")
|
| 396 |
+
|
| 397 |
+
skf = StratifiedKFold(n_splits=cv, shuffle=True, random_state=random_state)
|
| 398 |
+
cv_scores = []
|
| 399 |
+
all_y_true = []
|
| 400 |
+
all_y_pred = []
|
| 401 |
+
|
| 402 |
+
class_counts = np.bincount(y)
|
| 403 |
+
baseline_accuracy = np.max(class_counts) / len(y)
|
| 404 |
+
most_frequent_class = np.argmax(class_counts)
|
| 405 |
+
|
| 406 |
+
print(f"Baseline (most frequent class) accuracy: {baseline_accuracy:.4f}")
|
| 407 |
+
print(f"Most frequent class: {label_encoder.inverse_transform([most_frequent_class])[0]}")
|
| 408 |
+
|
| 409 |
+
fold = 1
|
| 410 |
+
for train_idx, test_idx in skf.split(X, y):
|
| 411 |
+
print(f"\nTraining fold {fold}/{cv}...")
|
| 412 |
+
|
| 413 |
+
X_train_fold, X_test_fold = X[train_idx], X[test_idx]
|
| 414 |
+
y_train_fold, y_test_fold = y[train_idx], y[test_idx]
|
| 415 |
+
|
| 416 |
+
X_train_scaled = scaler.transform(X_train_fold)
|
| 417 |
+
X_test_scaled = scaler.transform(X_test_fold)
|
| 418 |
+
|
| 419 |
+
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
|
| 420 |
+
y_train_tensor = torch.LongTensor(y_train_fold).to(DEVICE)
|
| 421 |
+
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
|
| 422 |
+
|
| 423 |
+
input_size = X_train_scaled.shape[1]
|
| 424 |
+
num_classes = len(np.unique(y))
|
| 425 |
+
model = build_neural_network(input_size, num_classes, hidden_layers=model_config['hidden_layers'])
|
| 426 |
+
|
| 427 |
+
criterion = nn.CrossEntropyLoss()
|
| 428 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 429 |
+
|
| 430 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
| 431 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 432 |
+
|
| 433 |
+
model.train()
|
| 434 |
+
for epoch in range(cv_epochs):
|
| 435 |
+
for inputs, labels in train_loader:
|
| 436 |
+
optimizer.zero_grad()
|
| 437 |
+
outputs = model(inputs)
|
| 438 |
+
loss = criterion(outputs, labels)
|
| 439 |
+
loss.backward()
|
| 440 |
+
optimizer.step()
|
| 441 |
+
|
| 442 |
+
model.eval()
|
| 443 |
+
with torch.no_grad():
|
| 444 |
+
outputs = model(X_test_tensor)
|
| 445 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 446 |
+
predicted_np = predicted.cpu().numpy()
|
| 447 |
+
|
| 448 |
+
fold_accuracy = (predicted_np == y_test_fold).mean()
|
| 449 |
+
cv_scores.append(fold_accuracy)
|
| 450 |
+
|
| 451 |
+
all_y_true.extend(y_test_fold)
|
| 452 |
+
all_y_pred.extend(predicted_np)
|
| 453 |
+
|
| 454 |
+
print(f"Fold {fold} accuracy: {fold_accuracy:.4f}")
|
| 455 |
+
|
| 456 |
+
fold += 1
|
| 457 |
+
|
| 458 |
+
cv_scores = np.array(cv_scores)
|
| 459 |
+
mean_accuracy = cv_scores.mean()
|
| 460 |
+
std_accuracy = cv_scores.std()
|
| 461 |
+
|
| 462 |
+
ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(cv)
|
| 463 |
+
ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(cv)
|
| 464 |
+
|
| 465 |
+
t_stat, p_value = stats.ttest_1samp(cv_scores, baseline_accuracy)
|
| 466 |
+
|
| 467 |
+
results = {
|
| 468 |
+
'cv_scores': [float(score) for score in cv_scores.tolist()],
|
| 469 |
+
'mean_accuracy': float(mean_accuracy),
|
| 470 |
+
'std_accuracy': float(std_accuracy),
|
| 471 |
+
'confidence_interval_95': [float(ci_lower), float(ci_upper)],
|
| 472 |
+
'baseline_accuracy': float(baseline_accuracy),
|
| 473 |
+
't_statistic': float(t_stat),
|
| 474 |
+
'p_value': float(p_value),
|
| 475 |
+
'statistically_significant': "yes" if p_value < 0.05 else "no"
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
print("\nStatistical Significance Results:")
|
| 479 |
+
print(f"Cross-validation accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
|
| 480 |
+
print(f"95% confidence interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
|
| 481 |
+
print(f"Baseline accuracy (most frequent class): {baseline_accuracy:.4f}")
|
| 482 |
+
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.6f}")
|
| 483 |
+
|
| 484 |
+
if p_value < 0.05:
|
| 485 |
+
print("The model is significantly better than the baseline (p < 0.05)")
|
| 486 |
+
else:
|
| 487 |
+
print("The model is NOT significantly better than the baseline (p >= 0.05)")
|
| 488 |
+
|
| 489 |
+
class_names = label_encoder.classes_
|
| 490 |
+
cm = pd.crosstab(
|
| 491 |
+
pd.Series(all_y_true, name='Actual'),
|
| 492 |
+
pd.Series(all_y_pred, name='Predicted'),
|
| 493 |
+
normalize='index'
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
cm.index = [class_names[i] for i in range(len(class_names))]
|
| 497 |
+
cm.columns = [class_names[i] for i in range(len(class_names))]
|
| 498 |
+
|
| 499 |
+
plt.figure(figsize=(10, 8))
|
| 500 |
+
sns.heatmap(cm, annot=True, fmt='.2f', cmap='Blues')
|
| 501 |
+
plt.title('Normalized Confusion Matrix (Cross-Validation)')
|
| 502 |
+
plt.ylabel('True Label')
|
| 503 |
+
plt.xlabel('Predicted Label')
|
| 504 |
+
|
| 505 |
+
os.makedirs('plots', exist_ok=True)
|
| 506 |
+
plt.savefig('plots/confusion_matrix_cv.png')
|
| 507 |
+
plt.close()
|
| 508 |
+
print("Confusion matrix saved to plots/confusion_matrix_cv.png")
|
| 509 |
+
|
| 510 |
+
return results
|
| 511 |
+
|
| 512 |
+
def parse_args():
|
| 513 |
+
parser = argparse.ArgumentParser(description='Neural Network Classifier with Statistical Significance Testing')
|
| 514 |
+
parser.add_argument('--random_seed', type=int, default=None,
|
| 515 |
+
help='Random seed for reproducibility. If not provided, a random seed will be generated.')
|
| 516 |
+
parser.add_argument('--multiple_runs', type=int, default=1,
|
| 517 |
+
help='Number of runs with different random seeds')
|
| 518 |
+
return parser.parse_args()
|
| 519 |
+
|
| 520 |
+
def main():
|
| 521 |
+
args = parse_args()
|
| 522 |
+
|
| 523 |
+
if args.random_seed is None:
|
| 524 |
+
seed = int(time.time() * 1000) % 10000
|
| 525 |
+
print(f"Using random seed: {seed}")
|
| 526 |
+
else:
|
| 527 |
+
seed = args.random_seed
|
| 528 |
+
print(f"Using provided seed: {seed}")
|
| 529 |
+
|
| 530 |
+
all_run_results = []
|
| 531 |
+
|
| 532 |
+
for run in range(args.multiple_runs):
|
| 533 |
+
if args.multiple_runs > 1:
|
| 534 |
+
current_seed = seed + run
|
| 535 |
+
print(f"\n\nRun {run+1}/{args.multiple_runs} with seed {current_seed}\n")
|
| 536 |
+
else:
|
| 537 |
+
current_seed = seed
|
| 538 |
+
|
| 539 |
+
np.random.seed(current_seed)
|
| 540 |
+
torch.manual_seed(current_seed)
|
| 541 |
+
if GPU_AVAILABLE:
|
| 542 |
+
torch.cuda.manual_seed_all(current_seed)
|
| 543 |
+
torch.backends.cudnn.deterministic = True
|
| 544 |
+
torch.backends.cudnn.benchmark = False
|
| 545 |
+
|
| 546 |
+
plt.switch_backend('agg')
|
| 547 |
+
|
| 548 |
+
model_config = {
|
| 549 |
+
'hidden_layers': [128, 96, 64, 32],
|
| 550 |
+
'dropout_rate': 0.1
|
| 551 |
+
}
|
| 552 |
+
|
| 553 |
+
feature_config = {
|
| 554 |
+
'basic_scores': True,
|
| 555 |
+
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
|
| 556 |
+
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
|
| 557 |
+
'syntactic': ['dependencies', 'noun_chunks'],
|
| 558 |
+
'entities': ['total_entities', 'entity_types'],
|
| 559 |
+
'diversity': ['ttr', 'mtld'],
|
| 560 |
+
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
|
| 561 |
+
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
|
| 562 |
+
'semantic': True
|
| 563 |
+
}
|
| 564 |
+
|
| 565 |
+
model, scaler, label_encoder, accuracy = train_neural_network(
|
| 566 |
+
directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
|
| 567 |
+
model_config=model_config,
|
| 568 |
+
feature_config=feature_config,
|
| 569 |
+
random_state=current_seed
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
print("\nPerforming statistical significance testing...")
|
| 573 |
+
df = load_data_from_json("experiments/results/two_scores_with_long_text_analyze_2048T")
|
| 574 |
+
features_df = select_features(df, feature_config)
|
| 575 |
+
|
| 576 |
+
imputer = SimpleImputer(strategy='mean')
|
| 577 |
+
X = imputer.fit_transform(features_df)
|
| 578 |
+
y = df['label'].values
|
| 579 |
+
y_encoded = label_encoder.transform(y)
|
| 580 |
+
|
| 581 |
+
significance_results = evaluate_statistical_significance(
|
| 582 |
+
X, y_encoded, model_config, scaler, label_encoder, cv=5, random_state=current_seed
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
run_info = {
|
| 586 |
+
'run_id': run + 1,
|
| 587 |
+
'seed': current_seed,
|
| 588 |
+
'accuracy': float(accuracy),
|
| 589 |
+
'statistical_significance': significance_results
|
| 590 |
+
}
|
| 591 |
+
all_run_results.append(run_info)
|
| 592 |
+
|
| 593 |
+
output_dir = f'models/neural_network/run_{run+1}_seed_{current_seed}'
|
| 594 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 595 |
+
|
| 596 |
+
with open(f'{output_dir}/statistical_results.json', 'w') as f:
|
| 597 |
+
json.dump(significance_results, f, indent=4)
|
| 598 |
+
|
| 599 |
+
save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network')
|
| 600 |
+
|
| 601 |
+
if args.multiple_runs > 1:
|
| 602 |
+
accuracy_values = [run['accuracy'] for run in all_run_results]
|
| 603 |
+
mean_accuracy = np.mean(accuracy_values)
|
| 604 |
+
std_accuracy = np.std(accuracy_values)
|
| 605 |
+
|
| 606 |
+
print("\n" + "="*60)
|
| 607 |
+
print(f"SUMMARY OF {args.multiple_runs} RUNS")
|
| 608 |
+
print("="*60)
|
| 609 |
+
print(f"Mean accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
|
| 610 |
+
print(f"Min accuracy: {min(accuracy_values):.4f}, Max accuracy: {max(accuracy_values):.4f}")
|
| 611 |
+
|
| 612 |
+
summary = {
|
| 613 |
+
'num_runs': args.multiple_runs,
|
| 614 |
+
'base_seed': seed,
|
| 615 |
+
'accuracy_mean': float(mean_accuracy),
|
| 616 |
+
'accuracy_std': float(std_accuracy),
|
| 617 |
+
'accuracy_min': float(min(accuracy_values)),
|
| 618 |
+
'accuracy_max': float(max(accuracy_values)),
|
| 619 |
+
'all_runs': all_run_results
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
with open('models/neural_network/multiple_runs_summary.json', 'w') as f:
|
| 623 |
+
json.dump(summary, f, indent=4)
|
| 624 |
+
print("Summary saved to models/neural_network/multiple_runs_summary.json")
|
| 625 |
+
|
| 626 |
+
if __name__ == "__main__":
|
| 627 |
+
main()
|
models/neural_network/imputer.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:188d4008a04267264ab8575a77248bc14c9918ead0e586b549fb4844cb306039
|
| 3 |
+
size 1975
|
models/neural_network/label_encoder.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4df61318f184976384ce86efad867496f329e47f12723440beadd5e5649a7f3
|
| 3 |
+
size 563
|
models/neural_network/nn_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1aeb4b7a9081b2efcd63fc50f07325d00fd20aa3ab776e0398b7bf8263ae9f95
|
| 3 |
+
size 109126
|
models/neural_network/scaler.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:827e410b2b95d876fde7a040998dd3a2415a1fec96962c284a93473aeaba192b
|
| 3 |
+
size 1623
|