Create app-with-custom-models.py
Browse files- app-with-custom-models.py +153 -0
app-with-custom-models.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from autogen.runtime_logging import start, stop
|
| 4 |
+
from autogen_agentchat.agents import AssistantAgent
|
| 5 |
+
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
|
| 6 |
+
from autogen_agentchat.teams import RoundRobinGroupChat
|
| 7 |
+
from autogen_ext.models.openai import OpenAIChatCompletionClient
|
| 8 |
+
from autogen_agentchat.base import TaskResult
|
| 9 |
+
|
| 10 |
+
# Configuration
|
| 11 |
+
LOG_FILE = "team_runtime.log"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
config_list_primary = [
|
| 15 |
+
{"model": "lm-broca", "api_type": "openai", "max_tokens": 4096, "api_key": "sk-", "base_url": "<base-url>", "tags": ["lm-broca", "openai"]},
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
config_list_critic = [
|
| 19 |
+
{"model": "groq-mixtral-8x7b-32768", "api_type": "openai", "max_tokens": 16192, "api_key": "sk-", "base_url": "<base-url>", "tags": ["groq-mixtral-8x7b-32768", "openai"]},
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
llm_config_primary = {
|
| 23 |
+
"config_list": config_list_primary,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
llm_config_critic = {
|
| 27 |
+
"config_list": config_list_critic,
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
#def create_llm_config_critic():
|
| 31 |
+
# return {
|
| 32 |
+
# "model": "groq-mixtral-8x7b-32768",
|
| 33 |
+
# "api_key": "sk-BhYjxpcKH_4w4H9jduTVwA",
|
| 34 |
+
# "base_url": "https://litellm.j78.org/v1",
|
| 35 |
+
# "cache_seed": None
|
| 36 |
+
# }
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Create the team with primary and critic agents
|
| 40 |
+
def create_team(llm_config_primary, primary_system_message, critic_system_message):
|
| 41 |
+
model_client = OpenAIChatCompletionClient(**llm_config)
|
| 42 |
+
|
| 43 |
+
primary_agent = AssistantAgent(
|
| 44 |
+
"primary",
|
| 45 |
+
llm_config_primary={"config_list": config_list_primary})
|
| 46 |
+
system_message=primary_system_message,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
critic_agent = AssistantAgent(
|
| 50 |
+
"critic",
|
| 51 |
+
llm_config_critic={"config_list": config_list_critic})
|
| 52 |
+
system_message=critic_system_message
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Set termination conditions (10-message cap OR "APPROVE" detected)
|
| 56 |
+
max_message_termination = MaxMessageTermination(max_messages=10)
|
| 57 |
+
text_termination = TextMentionTermination("APPROVE")
|
| 58 |
+
combined_termination = max_message_termination | text_termination
|
| 59 |
+
|
| 60 |
+
team = RoundRobinGroupChat([primary_agent, critic_agent], termination_condition=combined_termination)
|
| 61 |
+
return team, model_client
|
| 62 |
+
|
| 63 |
+
# Function to stream the task through the workflow
|
| 64 |
+
async def async_stream_task(task_message, api_key, primary_system_message, critic_system_message, documentation_system_message):
|
| 65 |
+
# Start logging
|
| 66 |
+
logging_session_id = start(logger_type="file", config={"filename": LOG_FILE})
|
| 67 |
+
print(f"Logging session ID: {logging_session_id}")
|
| 68 |
+
|
| 69 |
+
llm_config_primary={"config_list": config_list_primary})
|
| 70 |
+
llm_config={"config_list": config_list_primary})
|
| 71 |
+
team, model_client = create_team(llm_config, primary_system_message, critic_system_message)
|
| 72 |
+
documentation_triggered = False # Track if documentation agent was triggered
|
| 73 |
+
final_output = None # Store the final approved output
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
async for message in team.run_stream(task=task_message):
|
| 77 |
+
if hasattr(message, "source") and hasattr(message, "content"):
|
| 78 |
+
# Handle critic's approval
|
| 79 |
+
if message.source == "critic" and "APPROVE" in message.content:
|
| 80 |
+
print("Critic approved the response. Handing off to Documentation Agent...")
|
| 81 |
+
documentation_triggered = True
|
| 82 |
+
final_output = task_message # Capture the final approved output
|
| 83 |
+
break
|
| 84 |
+
yield message.source, message.content
|
| 85 |
+
|
| 86 |
+
# Trigger Documentation Agent if approved
|
| 87 |
+
if documentation_triggered and final_output:
|
| 88 |
+
documentation_agent = AssistantAgent(
|
| 89 |
+
"documentation",
|
| 90 |
+
model_client=model_client,
|
| 91 |
+
system_message=documentation_system_message,
|
| 92 |
+
)
|
| 93 |
+
doc_task = f"Generate a '--help' message for the following code:\n\n{final_output}"
|
| 94 |
+
async for doc_message in documentation_agent.run_stream(task=doc_task):
|
| 95 |
+
if isinstance(doc_message, TaskResult):
|
| 96 |
+
# Extract messages from TaskResult
|
| 97 |
+
for msg in doc_message.messages:
|
| 98 |
+
yield msg.source, msg.content
|
| 99 |
+
else:
|
| 100 |
+
yield doc_message.source, doc_message.content
|
| 101 |
+
|
| 102 |
+
finally:
|
| 103 |
+
# Stop logging
|
| 104 |
+
stop()
|
| 105 |
+
|
| 106 |
+
# Gradio interface function
|
| 107 |
+
async def chat_interface(api_key, primary_system_message, critic_system_message, documentation_system_message, task_message):
|
| 108 |
+
primary_messages = []
|
| 109 |
+
critic_messages = []
|
| 110 |
+
documentation_messages = []
|
| 111 |
+
|
| 112 |
+
# Append new messages while streaming
|
| 113 |
+
async for source, output in async_stream_task(task_message, api_key, primary_system_message, critic_system_message, documentation_system_message):
|
| 114 |
+
if source == "primary":
|
| 115 |
+
primary_messages.append(output)
|
| 116 |
+
elif source == "critic":
|
| 117 |
+
critic_messages.append(output)
|
| 118 |
+
elif source == "documentation":
|
| 119 |
+
documentation_messages.append(output)
|
| 120 |
+
|
| 121 |
+
# Return all outputs
|
| 122 |
+
yield (
|
| 123 |
+
"\n".join(primary_messages),
|
| 124 |
+
"\n".join(critic_messages),
|
| 125 |
+
"\n".join(documentation_messages),
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Gradio interface
|
| 129 |
+
iface = gr.Interface(
|
| 130 |
+
fn=chat_interface,
|
| 131 |
+
inputs=[
|
| 132 |
+
gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API Key"),
|
| 133 |
+
gr.Textbox(label="Primary Agent System Message", placeholder="Enter the system message for the primary agent", value="You are a creative assistant focused on producing high-quality code."),
|
| 134 |
+
gr.Textbox(label="Critic Agent System Message", placeholder="Enter the system message for the critic agent (requires APPROVAL tag!)", value="You are a critic assistant highly skilled in evaluating the quality of a given code or response. Provide constructive feedback and respond with 'APPROVE' once the feedback is addressed. Do not produce any content or code yourself, only provide feedback!"),
|
| 135 |
+
gr.Textbox(label="Documentation Agent System Message", placeholder="Enter the system message for the documentation agent", value="You are a documentation assistant. Write a short and concise '--help' message for the provided code."),
|
| 136 |
+
gr.Textbox(label="Task Message", placeholder="Code a random password generator using python."),
|
| 137 |
+
],
|
| 138 |
+
outputs=[
|
| 139 |
+
gr.Textbox(label="The Primary Assistant Messages"),
|
| 140 |
+
gr.Textbox(label="The Critics Assistant Messages"),
|
| 141 |
+
gr.Textbox(label="The Documentation Assistant Message"),
|
| 142 |
+
],
|
| 143 |
+
title="Team Workflow with Documentation Agent and Hard Cap",
|
| 144 |
+
description="""Collaborative workflow between Primary, Critic, and Documentation agents.
|
| 145 |
+
1. The user can send a prompt to the primary agent.
|
| 146 |
+
2. The response will then be evaluated by the critic, which either sends feedback back to the primary agent or gives the APPROVAL sign.
|
| 147 |
+
3. If the APPROVAL sign is given, the documentation agent is asked to write a short documentation for the code (that has been approved by the critic and generated by the priamry agent.
|
| 148 |
+
4. (Note: There is a hard cap of 10 messages for the critic to approve the output of the primary agent. If it fails to do so the workflow is interrupted to prevent long loops)"""
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Launch the app
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
iface.launch(share=True)
|