Upload 4 files
Browse files- .gitattributes +1 -0
- NotoSansSC-Regular.ttf +3 -0
- README.md +6 -5
- app.py +435 -0
- requirements.txt +25 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
NotoSansSC-Regular.ttf filter=lfs diff=lfs merge=lfs -text
|
NotoSansSC-Regular.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cf8b2a0576d5680284ab03a7a8219499d59bbe981a79bb3dc0031f251c39736
|
3 |
+
size 10560616
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Studio
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.12.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Studio
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import concurrent.futures
|
3 |
+
import gradio as gr
|
4 |
+
from datetime import datetime
|
5 |
+
import random
|
6 |
+
import moviepy
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
+
from moviepy import (
|
10 |
+
ImageClip,
|
11 |
+
VideoFileClip,
|
12 |
+
TextClip,
|
13 |
+
CompositeVideoClip,
|
14 |
+
CompositeAudioClip,
|
15 |
+
AudioFileClip,
|
16 |
+
concatenate_videoclips,
|
17 |
+
concatenate_audioclips
|
18 |
+
)
|
19 |
+
from gtts import gTTS
|
20 |
+
import subprocess
|
21 |
+
import speech_recognition as sr
|
22 |
+
import json
|
23 |
+
from nltk.tokenize import sent_tokenize
|
24 |
+
import logging
|
25 |
+
from textblob import TextBlob
|
26 |
+
import whisper
|
27 |
+
import time
|
28 |
+
import sqlite3
|
29 |
+
|
30 |
+
# Define the passcode
|
31 |
+
PASSCODE = "show_feedback_db"
|
32 |
+
|
33 |
+
css = """
|
34 |
+
/* Adjust row height */
|
35 |
+
.dataframe-container tr {
|
36 |
+
height: 50px !important;
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Ensure text wrapping and prevent overflow */
|
40 |
+
.dataframe-container td {
|
41 |
+
white-space: normal !important;
|
42 |
+
word-break: break-word !important;
|
43 |
+
}
|
44 |
+
|
45 |
+
/* Set column widths */
|
46 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
|
47 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
|
48 |
+
width: 6%; /* Start column */
|
49 |
+
}
|
50 |
+
|
51 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
|
52 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
|
53 |
+
width: 47%; /* Original text */
|
54 |
+
}
|
55 |
+
|
56 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
|
57 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
|
58 |
+
width: 47%; /* Translated text */
|
59 |
+
}
|
60 |
+
|
61 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
|
62 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
|
63 |
+
display: none !important;
|
64 |
+
}
|
65 |
+
"""
|
66 |
+
|
67 |
+
# Function to save feedback or provide access to the database file
|
68 |
+
def handle_feedback(feedback):
|
69 |
+
feedback = feedback.strip() # Clean up leading/trailing whitespace
|
70 |
+
if not feedback:
|
71 |
+
return "Feedback cannot be empty.", None
|
72 |
+
|
73 |
+
if feedback == PASSCODE:
|
74 |
+
# Provide access to the feedback.db file
|
75 |
+
return "Access granted! Download the database file below.", "feedback.db"
|
76 |
+
else:
|
77 |
+
# Save feedback to the database
|
78 |
+
with sqlite3.connect("feedback.db") as conn:
|
79 |
+
cursor = conn.cursor()
|
80 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
|
81 |
+
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
|
82 |
+
conn.commit()
|
83 |
+
return "Thank you for your feedback!", None
|
84 |
+
|
85 |
+
# Configure logging
|
86 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
87 |
+
logger = logging.getLogger(__name__)
|
88 |
+
logger.info(f"MoviePy Version: {moviepy.__version__}")
|
89 |
+
|
90 |
+
def silence(duration, fps=44100):
|
91 |
+
"""
|
92 |
+
Returns a silent AudioClip of the specified duration.
|
93 |
+
"""
|
94 |
+
return AudioFileClip(np.zeros((int(fps*duration), 2)), fps=fps)
|
95 |
+
|
96 |
+
def transcribe_video(video_path):
|
97 |
+
# Load the video file and extract audio
|
98 |
+
video = VideoFileClip(video_path)
|
99 |
+
audio_path = "audio.wav"
|
100 |
+
video.audio.write_audiofile(audio_path)
|
101 |
+
|
102 |
+
# Load Whisper model
|
103 |
+
model = whisper.load_model("base") # Options: tiny, base, small, medium, large
|
104 |
+
|
105 |
+
# Transcribe with Whisper
|
106 |
+
result = model.transcribe(audio_path, word_timestamps=True)
|
107 |
+
|
108 |
+
# Extract timestamps and text
|
109 |
+
transcript_with_timestamps = [
|
110 |
+
{
|
111 |
+
"start": segment["start"],
|
112 |
+
"end": segment["end"],
|
113 |
+
"text": segment["text"]
|
114 |
+
}
|
115 |
+
for segment in result["segments"]
|
116 |
+
]
|
117 |
+
# Get the detected language
|
118 |
+
detected_language = result["language"]
|
119 |
+
logger.debug(f"Detected language:\n{detected_language}")
|
120 |
+
return transcript_with_timestamps, detected_language
|
121 |
+
|
122 |
+
# Function to get the appropriate translation model based on target language
|
123 |
+
def get_translation_model(source_language, target_language):
|
124 |
+
"""
|
125 |
+
Get the translation model based on the source and target language.
|
126 |
+
|
127 |
+
Parameters:
|
128 |
+
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
|
129 |
+
- source_language (str): The language of the input content (default is 'en' for English).
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
- str: The translation model identifier.
|
133 |
+
"""
|
134 |
+
# List of allowable languages
|
135 |
+
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
|
136 |
+
|
137 |
+
# Validate source and target languages
|
138 |
+
if source_language not in allowable_languages:
|
139 |
+
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
140 |
+
# Return a default model if source language is invalid
|
141 |
+
source_language = "en" # Default to 'en'
|
142 |
+
|
143 |
+
if target_language not in allowable_languages:
|
144 |
+
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
145 |
+
# Return a default model if target language is invalid
|
146 |
+
target_language = "zh" # Default to 'zh'
|
147 |
+
|
148 |
+
if source_language == target_language:
|
149 |
+
source_language = "en" # Default to 'en'
|
150 |
+
target_language = "zh" # Default to 'zh'
|
151 |
+
|
152 |
+
# Return the model using string concatenation
|
153 |
+
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
154 |
+
|
155 |
+
def translate_text(transcription_json, source_language, target_language):
|
156 |
+
# Load the translation model for the specified target language
|
157 |
+
translation_model_id = get_translation_model(source_language, target_language)
|
158 |
+
logger.debug(f"Translation model: {translation_model_id}")
|
159 |
+
translator = pipeline("translation", model=translation_model_id)
|
160 |
+
|
161 |
+
# Prepare output structure
|
162 |
+
translated_json = []
|
163 |
+
|
164 |
+
# Translate each sentence and store it with its start time
|
165 |
+
for entry in transcription_json:
|
166 |
+
original_text = entry["text"]
|
167 |
+
translated_text = translator(original_text)[0]['translation_text']
|
168 |
+
translated_json.append({
|
169 |
+
"start": entry["start"],
|
170 |
+
"original": original_text,
|
171 |
+
"translated": translated_text,
|
172 |
+
"end": entry["end"]
|
173 |
+
})
|
174 |
+
# Log the components being added to translated_json
|
175 |
+
logger.debug("Adding to translated_json: start=%s, original=%s, translated=%s, end=%s",
|
176 |
+
entry["start"], original_text, translated_text, entry["end"])
|
177 |
+
|
178 |
+
# Return the translated timestamps as a JSON string
|
179 |
+
return translated_json
|
180 |
+
|
181 |
+
def update_translations(file, edited_table, mode):
|
182 |
+
"""
|
183 |
+
Update the translations based on user edits in the Gradio Dataframe.
|
184 |
+
"""
|
185 |
+
output_video_path = "output_video.mp4"
|
186 |
+
logger.debug(f"Editable Table: {edited_table}")
|
187 |
+
|
188 |
+
try:
|
189 |
+
start_time = time.time() # Start the timer
|
190 |
+
|
191 |
+
# Convert the edited_table (list of lists) back to list of dictionaries
|
192 |
+
updated_translations = [
|
193 |
+
{
|
194 |
+
"start": row["start"], # Access by column name
|
195 |
+
"original": row["original"],
|
196 |
+
"translated": row["translated"],
|
197 |
+
"end": row["end"]
|
198 |
+
}
|
199 |
+
for _, row in edited_table.iterrows()
|
200 |
+
]
|
201 |
+
|
202 |
+
# Call the function to process the video with updated translations
|
203 |
+
add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
|
204 |
+
|
205 |
+
# Calculate elapsed time
|
206 |
+
elapsed_time = time.time() - start_time
|
207 |
+
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
|
208 |
+
|
209 |
+
return output_video_path, elapsed_time_display
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
raise ValueError(f"Error updating translations: {e}")
|
213 |
+
|
214 |
+
def process_entry(entry, i, video_width, video_height, add_voiceover, target_language):
|
215 |
+
logger.debug(f"Processing entry {i}: {entry}")
|
216 |
+
|
217 |
+
# Create text clip for subtitles
|
218 |
+
txt_clip = TextClip(
|
219 |
+
text=entry["translated"],
|
220 |
+
font="./NotoSansSC-Regular.ttf",
|
221 |
+
method='caption',
|
222 |
+
color='yellow',
|
223 |
+
stroke_color='black', # Border color
|
224 |
+
stroke_width=2, # Border thickness
|
225 |
+
font_size=int(video_height // 20),
|
226 |
+
size=(int(video_width * 0.8), None)
|
227 |
+
).with_start(entry["start"]).with_duration(entry["end"] - entry["start"]).with_position(('bottom')).with_opacity(0.8)
|
228 |
+
|
229 |
+
audio_segment = None
|
230 |
+
if add_voiceover:
|
231 |
+
segment_audio_path = f"segment_{i}_voiceover.wav"
|
232 |
+
generate_voiceover([entry], target_language, segment_audio_path)
|
233 |
+
audio_clip = AudioFileClip(segment_audio_path)
|
234 |
+
# Get and log all methods in AudioFileClip
|
235 |
+
logger.info("Methods in AudioFileClip:")
|
236 |
+
for method in dir(audio_clip):
|
237 |
+
logger.info(method)
|
238 |
+
desired_duration = entry["end"] - entry["start"]
|
239 |
+
|
240 |
+
# Log duration of the audio clip and the desired duration for debugging.
|
241 |
+
logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
|
242 |
+
|
243 |
+
if audio_clip.duration < desired_duration:
|
244 |
+
# Pad with silence if audio is too short
|
245 |
+
silence_duration = desired_duration - audio_clip.duration
|
246 |
+
|
247 |
+
# Concatenate the original audio and silence
|
248 |
+
audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
|
249 |
+
logger.info(f"Padded audio with {silence_duration} seconds of silence.")
|
250 |
+
|
251 |
+
# Set the audio_segment to the required duration.
|
252 |
+
audio_segment = audio_clip.with_start(entry["start"]).with_duration(desired_duration)
|
253 |
+
|
254 |
+
return i, txt_clip, audio_segment
|
255 |
+
|
256 |
+
def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en"):
|
257 |
+
"""
|
258 |
+
Add transcript and voiceover to a video, segment by segment.
|
259 |
+
"""
|
260 |
+
video = VideoFileClip(video_path)
|
261 |
+
font_path = "./NotoSansSC-Regular.ttf"
|
262 |
+
|
263 |
+
text_clips = []
|
264 |
+
audio_segments = []
|
265 |
+
|
266 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
267 |
+
futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language)
|
268 |
+
for i, entry in enumerate(translated_json)]
|
269 |
+
|
270 |
+
# Collect results with original index i
|
271 |
+
results = []
|
272 |
+
for future in concurrent.futures.as_completed(futures):
|
273 |
+
try:
|
274 |
+
i, txt_clip, audio_segment = future.result()
|
275 |
+
results.append((i, txt_clip, audio_segment))
|
276 |
+
except Exception as e:
|
277 |
+
logger.error(f"Error processing entry: {e}")
|
278 |
+
|
279 |
+
# Sort by original index i
|
280 |
+
results.sort(key=lambda x: x[0])
|
281 |
+
|
282 |
+
# Extract sorted clips
|
283 |
+
text_clips = [clip for i, clip, segment in results]
|
284 |
+
|
285 |
+
final_video = CompositeVideoClip([video] + text_clips)
|
286 |
+
|
287 |
+
logger.info("Methods in CompositeVideoClip:")
|
288 |
+
for method in dir(final_video):
|
289 |
+
logger.info(method)
|
290 |
+
|
291 |
+
if add_voiceover:
|
292 |
+
audio_segments = [segment for i, clip, segment in results if segment is not None]
|
293 |
+
final_audio = CompositeAudioClip(audio_segments) # Critical fix
|
294 |
+
final_audio = final_audio.with_duration(video.duration)
|
295 |
+
|
296 |
+
final_video = final_video.with_audio(final_audio)
|
297 |
+
|
298 |
+
logger.info(f"Saving the final video to: {output_path}")
|
299 |
+
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
300 |
+
|
301 |
+
logger.info("Video processing completed successfully.")
|
302 |
+
|
303 |
+
def generate_voiceover(translated_json, language, output_audio_path):
|
304 |
+
"""
|
305 |
+
Generate voiceover from translated text for a given language.
|
306 |
+
"""
|
307 |
+
# Concatenate translated text into a single string
|
308 |
+
full_text = " ".join(entry["translated"] for entry in translated_json)
|
309 |
+
|
310 |
+
try:
|
311 |
+
tts = gTTS(text=full_text, lang=language)
|
312 |
+
time.sleep(10) # Add a delay of 10 seconds between requests
|
313 |
+
tts.save(output_audio_path)
|
314 |
+
except Exception as e:
|
315 |
+
raise ValueError(f"Error generating voiceover: {e}")
|
316 |
+
|
317 |
+
def upload_and_manage(file, target_language, mode="transcription"):
|
318 |
+
if file is None:
|
319 |
+
logger.info("No file uploaded. Please upload a video/audio file.")
|
320 |
+
return None, [], None, "No file uploaded. Please upload a video/audio file."
|
321 |
+
|
322 |
+
try:
|
323 |
+
start_time = time.time() # Start the timer
|
324 |
+
logger.info(f"Started processing file: {file.name}")
|
325 |
+
|
326 |
+
# Define paths for audio and output files
|
327 |
+
audio_path = "audio.wav"
|
328 |
+
output_video_path = "output_video.mp4"
|
329 |
+
voiceover_path = "voiceover.wav"
|
330 |
+
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
|
331 |
+
|
332 |
+
# Step 1: Transcribe audio from uploaded media file and get timestamps
|
333 |
+
logger.info("Transcribing audio...")
|
334 |
+
transcription_json, source_language = transcribe_video(file.name)
|
335 |
+
logger.info(f"Transcription completed. Detected source language: {source_language}")
|
336 |
+
|
337 |
+
# Step 2: Translate the transcription
|
338 |
+
logger.info(f"Translating transcription from {source_language} to {target_language}...")
|
339 |
+
translated_json = translate_text(transcription_json, source_language, target_language)
|
340 |
+
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
|
341 |
+
|
342 |
+
# Step 3: Add transcript to video based on timestamps
|
343 |
+
logger.info("Adding translated transcript to video...")
|
344 |
+
add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
|
345 |
+
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
|
346 |
+
|
347 |
+
# Convert translated JSON into a format for the editable table
|
348 |
+
logger.info("Converting translated JSON into editable table format...")
|
349 |
+
editable_table = [
|
350 |
+
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"])]
|
351 |
+
for entry in translated_json
|
352 |
+
]
|
353 |
+
|
354 |
+
# Calculate elapsed time
|
355 |
+
elapsed_time = time.time() - start_time
|
356 |
+
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
|
357 |
+
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
|
358 |
+
|
359 |
+
return translated_json, editable_table, output_video_path, elapsed_time_display
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
logger.error(f"An error occurred: {str(e)}")
|
363 |
+
return None, [], None, f"An error occurred: {str(e)}"
|
364 |
+
# Gradio Interface with Tabs
|
365 |
+
def build_interface():
|
366 |
+
with gr.Blocks(css=css) as demo:
|
367 |
+
gr.Markdown("## Video Localization")
|
368 |
+
with gr.Row():
|
369 |
+
with gr.Column(scale=4):
|
370 |
+
file_input = gr.File(label="Upload Video/Audio File")
|
371 |
+
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
|
372 |
+
process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
|
373 |
+
submit_button = gr.Button("Post and Process")
|
374 |
+
editable_translations = gr.State(value=[])
|
375 |
+
|
376 |
+
with gr.Column(scale=8):
|
377 |
+
gr.Markdown("## Edit Translations")
|
378 |
+
|
379 |
+
# Editable JSON Data
|
380 |
+
editable_table = gr.Dataframe(
|
381 |
+
value=[], # Default to an empty list to avoid undefined values
|
382 |
+
headers=["start", "original", "translated", "end"],
|
383 |
+
datatype=["number", "str", "str", "number"],
|
384 |
+
row_count=1, # Initially empty
|
385 |
+
col_count=4,
|
386 |
+
interactive=[False, True, True, False], # Control editability
|
387 |
+
label="Edit Translations",
|
388 |
+
wrap=True # Enables text wrapping if supported
|
389 |
+
)
|
390 |
+
save_changes_button = gr.Button("Save Changes")
|
391 |
+
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
|
392 |
+
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
|
393 |
+
|
394 |
+
with gr.Column(scale=1):
|
395 |
+
gr.Markdown("**Feedback**")
|
396 |
+
feedback_input = gr.Textbox(
|
397 |
+
placeholder="Leave your feedback here...",
|
398 |
+
label=None,
|
399 |
+
lines=3,
|
400 |
+
)
|
401 |
+
feedback_btn = gr.Button("Submit Feedback")
|
402 |
+
response_message = gr.Textbox(label=None, lines=1, interactive=False)
|
403 |
+
db_download = gr.File(label="Download Database File", visible=False)
|
404 |
+
|
405 |
+
# Link the feedback handling
|
406 |
+
def feedback_submission(feedback):
|
407 |
+
message, file_path = handle_feedback(feedback)
|
408 |
+
if file_path:
|
409 |
+
return message, gr.update(value=file_path, visible=True)
|
410 |
+
return message, gr.update(visible=False)
|
411 |
+
|
412 |
+
save_changes_button.click(
|
413 |
+
update_translations,
|
414 |
+
inputs=[file_input, editable_table, process_mode],
|
415 |
+
outputs=[processed_video_output, elapsed_time_display]
|
416 |
+
)
|
417 |
+
|
418 |
+
submit_button.click(
|
419 |
+
upload_and_manage,
|
420 |
+
inputs=[file_input, language_input, process_mode],
|
421 |
+
outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
|
422 |
+
)
|
423 |
+
|
424 |
+
# Connect submit button to save_feedback_db function
|
425 |
+
feedback_btn.click(
|
426 |
+
feedback_submission,
|
427 |
+
inputs=[feedback_input],
|
428 |
+
outputs=[response_message, db_download]
|
429 |
+
)
|
430 |
+
|
431 |
+
return demo
|
432 |
+
|
433 |
+
# Launch the Gradio interface
|
434 |
+
demo = build_interface()
|
435 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai-whisper
|
2 |
+
sentencepiece
|
3 |
+
SpeechRecognition
|
4 |
+
pydub
|
5 |
+
youtube_transcript_api
|
6 |
+
nltk
|
7 |
+
textblob
|
8 |
+
gradio
|
9 |
+
newspaper3k
|
10 |
+
transformers
|
11 |
+
sentence-transformers
|
12 |
+
openai
|
13 |
+
todoist-api-python
|
14 |
+
flask
|
15 |
+
twilio
|
16 |
+
fastapi
|
17 |
+
uvicorn
|
18 |
+
moviepy
|
19 |
+
ffmpy
|
20 |
+
google-cloud-storage
|
21 |
+
fpdf
|
22 |
+
markdown
|
23 |
+
nest_asyncio
|
24 |
+
reportlab
|
25 |
+
gtts
|