OUTPUT_DIR: "./output/ic15" MODEL: META_ARCHITECTURE: "GeneralizedRCNN" WEIGHT: catalog://ImageNetPretrained/MSRA/R-50 BACKBONE: CONV_BODY: "R-50-FPN" RESNETS: BACKBONE_OUT_CHANNELS: 256 RPN: USE_FPN: True ANCHOR_STRIDE: (4, 8, 16, 32, 64) ASPECT_RATIOS: (0.25, 0.5, 1.0, 2.0, 4.0) ROI_HEADS: USE_FPN: True SCORE_THRESH: 0.52 # ic15 NMS: 0.89 ROI_BOX_HEAD: DEFORMABLE_POOLING: False POOLER_RESOLUTION: 7 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) POOLER_SAMPLING_RATIO: 2 FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor" PREDICTOR: "FPNPredictor" NUM_CLASSES: 2 CLASS_WEIGHT: 1.0 ## Boundary BOUNDARY_ON: True ROI_BOUNDARY_HEAD: DEFORMABLE_POOLING: False FEATURE_EXTRACTOR: "BoundaryRCNNFPNFeatureExtractor" POOLER_RESOLUTION: 14 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) POOLER_SAMPLING_RATIO: 2 PREDICTOR: "BoundaryRCNNC4Predictor" RESOLUTION: 48 SHARE_BOX_FEATURE_EXTRACTOR: False BO_WEIGHT: 0.1 Loss_balance: 1.0 PROCESS: PNMS: True NMS_THRESH: 0.25 DATASETS: TRAIN: ("ic15_train",) TEST: ("ic15_test",) Test_Visual: True DATALOADER: SIZE_DIVISIBILITY: 32 SOLVER: BASE_LR: 0.00025 BIAS_LR_FACTOR: 2 WEIGHT_DECAY: 0.0001 # STEPS: (120000, 160000) STEPS: (5000, 10000) # fine-tune # MAX_ITER: 180000 MAX_ITER: 190500 # fine-tune IMS_PER_BATCH: 1 CHECKPOINT_PERIOD: 5000 INPUT: MIN_SIZE_TRAIN: (400,600,720,1000,1200) MAX_SIZE_TRAIN: 2000 MIN_SIZE_TEST: 1200 MAX_SIZE_TEST: 2000 CROP_PROB_TRAIN: 1.0 ROTATE_PROB_TRAIN: 0.3 # fine-tune # ROTATE_PROB_TRAIN: 1.0 # ROTATE_DEGREE: (0,30,60,90,210,150,180,210,240,270,300,330,360) ROTATE_DEGREE: (10,) # fine-tune TEST: IMS_PER_BATCH: 1