import wikipedia from youtube_transcript_api import YouTubeTranscriptApi import cv2 from pytube import YouTube import re import chess import chess.engine import pandas as pd import requests from bs4 import BeautifulSoup import whisper from imdb import IMDb import subprocess import sys # === wikipedia_search === def wikipedia_search_call(query: str) -> dict: page = wikipedia.page(query) sections = {sec: page.section(sec) for sec in page.sections} return {"title": page.title, "content": page.content, "sections": sections} # === youtube_transcript === def youtube_transcript_call(video_id: str) -> list: return YouTubeTranscriptApi.get_transcript(video_id) # === video_frame_analyzer === def download_and_sample(video_id: str, fps: int = 1) -> list: url = f"https://www.youtube.com/watch?v={video_id}" yt = YouTube(url) stream = yt.streams.filter(progressive=True, file_extension='mp4').first() path = stream.download(filename=f"{video_id}.mp4") cap = cv2.VideoCapture(path) frame_rate = cap.get(cv2.CAP_PROP_FPS) or 1 step = max(1, int(frame_rate / fps)) frames = [] idx = 0 while True: ret, frame = cap.read() if not ret: break if idx % step == 0: frames.append(frame) idx += 1 cap.release() return frames def detect_species(frame) -> list: # TODO: integrate actual CV model for bird-species detection return [] def video_frame_analyzer_call(video_id: str) -> int: frames = download_and_sample(video_id) counts = [len(set(detect_species(f))) for f in frames] return max(counts) if counts else 0 # === string_manipulator === def string_manipulator_call(text: str, operation: str = "reverse", pattern: str = None, replacement: str = None): if operation == "reverse": return text[::-1] if operation == "split": return text.split() if operation == "regex_replace" and pattern and replacement is not None: return re.sub(pattern, replacement, text) raise ValueError(f"Unsupported operation: {operation}") # === vision_chess_engine === def vision_chess_engine_call(fen: str, depth: int = 20) -> str: engine = chess.engine.SimpleEngine.popen_uci("stockfish") board = chess.Board(fen) result = engine.play(board, chess.engine.Limit(depth=depth)) engine.quit() return board.san(result.move) # === table_parser === def table_parser_call(file_path: str, sheet_name: str = None) -> pd.DataFrame: if file_path.lower().endswith('.csv'): return pd.read_csv(file_path) return pd.read_excel(file_path, sheet_name=sheet_name) # === libretext_fetcher === def libretext_fetcher_call(url: str, section_id: str) -> list: resp = requests.get(url) soup = BeautifulSoup(resp.text, "html.parser") sec = soup.find(id=section_id) if not sec: return [] items = sec.find_next('ul').find_all('li') return [li.get_text(strip=True) for li in items] # === audio_transcriber === def audio_transcriber_call(audio_path: str) -> str: model = whisper.load_model("base") result = model.transcribe(audio_path) return result.get("text", "") # === botanical_classifier === BOTANICAL_VEGETABLES = {"tomato", "eggplant", "pepper", "squash"} def botanical_classifier_call(items: list) -> list: return [item for item in items if item.lower() in BOTANICAL_VEGETABLES] # === imdb_lookup === def imdb_lookup_call(person_name: str) -> dict: ia = IMDb() results = ia.search_person(person_name) if not results: return {} person = results[0] ia.update(person, 'filmography') return {"name": person['name'], "filmography": person.get('filmography', {})} # === python_executor === def python_executor_call(script_path: str) -> str: proc = subprocess.run([sys.executable, script_path], capture_output=True, text=True, check=True) return proc.stdout.strip() # === sports_stats_api === def sports_stats_api_call(season: int, team: str, stat: str = "BB") -> dict: raise NotImplementedError("sports_stats_api integration not configured") # === web_scraper === def web_scraper_call(url: str, css_selector: str) -> list: resp = requests.get(url) soup = BeautifulSoup(resp.text, "html.parser") return [el.get_text(strip=True) for el in soup.select(css_selector)] # === excel_reader === def excel_reader_call(file_path: str, sheet_name: str = None) -> pd.DataFrame: return pd.read_excel(file_path, sheet_name=sheet_name) # === competition_db === def competition_db_call(year_start: int, year_end: int) -> list: raise NotImplementedError("competition_db integration not configured") # === japanese_baseball_api === def japanese_baseball_api_call(team: str, date: str) -> list: raise NotImplementedError("japanese_baseball_api integration not configured")