Upload 4 files
Browse files- app2.py +336 -0
- characters_list_got.joblib +3 -0
- embeddings_got.joblib +3 -0
- tfidf_embeddings_got.joblib +3 -0
app2.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
from sklearn.manifold import TSNE
|
| 8 |
+
from sklearn.decomposition import PCA
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
import plotly.graph_objects as go
|
| 12 |
+
from plotly.subplots import make_subplots
|
| 13 |
+
|
| 14 |
+
# Cache the data loading
|
| 15 |
+
@st.cache_data
|
| 16 |
+
def load_data():
|
| 17 |
+
characters_df = pd.DataFrame(joblib.load('characters_list_got.joblib'), columns=['character'])
|
| 18 |
+
characters_df['normalized'] = characters_df['character'].str.lower().str.strip()
|
| 19 |
+
character_names = sorted(characters_df['character'].tolist())
|
| 20 |
+
sbert_embeddings = joblib.load('embeddings_got.joblib')
|
| 21 |
+
tfidf_embeddings = joblib.load('tfidf_embeddings_got.joblib')
|
| 22 |
+
return characters_df, character_names, sbert_embeddings, tfidf_embeddings
|
| 23 |
+
|
| 24 |
+
def name_to_folder(name):
|
| 25 |
+
return name.lower().replace(" ", "_")
|
| 26 |
+
|
| 27 |
+
def get_image_path(name):
|
| 28 |
+
normalized = name.lower().strip()
|
| 29 |
+
folder_name = name_to_folder(normalized)
|
| 30 |
+
|
| 31 |
+
# Try different extensions
|
| 32 |
+
for ext in ['jpg', 'jpeg', 'png', 'gif', 'bmp']:
|
| 33 |
+
candidate_path = os.path.join("images", folder_name, f"000001.{ext}")
|
| 34 |
+
if os.path.exists(candidate_path):
|
| 35 |
+
return candidate_path
|
| 36 |
+
|
| 37 |
+
# Fallback to placeholder
|
| 38 |
+
placeholder_path = "images/placeholder.jpg"
|
| 39 |
+
return placeholder_path if os.path.exists(placeholder_path) else None
|
| 40 |
+
|
| 41 |
+
def recommend_characters(model_type, input_character, characters_df, sbert_embeddings, tfidf_embeddings):
|
| 42 |
+
input_character = input_character.lower().strip()
|
| 43 |
+
|
| 44 |
+
if input_character not in characters_df['normalized'].values:
|
| 45 |
+
return []
|
| 46 |
+
|
| 47 |
+
character_index = characters_df[characters_df['normalized'] == input_character].index[0]
|
| 48 |
+
embeddings = sbert_embeddings if model_type == "SBERT" else tfidf_embeddings
|
| 49 |
+
similarity_matrix = cosine_similarity(np.array(embeddings))
|
| 50 |
+
distances = similarity_matrix[character_index]
|
| 51 |
+
|
| 52 |
+
# Get top 5 similar characters
|
| 53 |
+
top_indices = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
|
| 54 |
+
|
| 55 |
+
results = []
|
| 56 |
+
for i, similarity_score in top_indices:
|
| 57 |
+
name = characters_df.iloc[i]['character']
|
| 58 |
+
image_path = get_image_path(name)
|
| 59 |
+
results.append((name.title(), image_path, similarity_score))
|
| 60 |
+
|
| 61 |
+
return results
|
| 62 |
+
|
| 63 |
+
# Visualization functions
|
| 64 |
+
@st.cache_data
|
| 65 |
+
def compute_tsne_2d(embeddings, perplexity=30, random_state=42):
|
| 66 |
+
"""Compute 2D t-SNE"""
|
| 67 |
+
tsne = TSNE(n_components=2, perplexity=perplexity, random_state=random_state)
|
| 68 |
+
return tsne.fit_transform(embeddings)
|
| 69 |
+
|
| 70 |
+
@st.cache_data
|
| 71 |
+
def compute_tsne_3d(embeddings, perplexity=30, random_state=42):
|
| 72 |
+
"""Compute 3D t-SNE"""
|
| 73 |
+
tsne = TSNE(n_components=3, perplexity=perplexity, random_state=random_state)
|
| 74 |
+
return tsne.fit_transform(embeddings)
|
| 75 |
+
|
| 76 |
+
@st.cache_data
|
| 77 |
+
def compute_pca_2d(embeddings):
|
| 78 |
+
"""Compute 2D PCA"""
|
| 79 |
+
pca = PCA(n_components=2)
|
| 80 |
+
return pca.fit_transform(embeddings)
|
| 81 |
+
|
| 82 |
+
@st.cache_data
|
| 83 |
+
def compute_pca_3d(embeddings):
|
| 84 |
+
"""Compute 3D PCA"""
|
| 85 |
+
pca = PCA(n_components=3)
|
| 86 |
+
return pca.fit_transform(embeddings)
|
| 87 |
+
|
| 88 |
+
def create_2d_plot(coords, characters, title, method):
|
| 89 |
+
"""Create 2D scatter plot"""
|
| 90 |
+
df_plot = pd.DataFrame({
|
| 91 |
+
'x': coords[:, 0],
|
| 92 |
+
'y': coords[:, 1],
|
| 93 |
+
'character': characters
|
| 94 |
+
})
|
| 95 |
+
|
| 96 |
+
fig = px.scatter(
|
| 97 |
+
df_plot,
|
| 98 |
+
x='x',
|
| 99 |
+
y='y',
|
| 100 |
+
text='character',
|
| 101 |
+
title=f"{title} - {method}",
|
| 102 |
+
hover_data={'character': True, 'x': ':.3f', 'y': ':.3f'}
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
fig.update_traces(
|
| 106 |
+
textposition="top center",
|
| 107 |
+
textfont_size=8,
|
| 108 |
+
marker=dict(size=8, opacity=0.7)
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
fig.update_layout(
|
| 112 |
+
height=600,
|
| 113 |
+
showlegend=False,
|
| 114 |
+
xaxis_title=f"{method} Component 1",
|
| 115 |
+
yaxis_title=f"{method} Component 2"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return fig
|
| 119 |
+
|
| 120 |
+
def create_3d_plot(coords, characters, title, method):
|
| 121 |
+
"""Create 3D scatter plot"""
|
| 122 |
+
fig = go.Figure(data=[go.Scatter3d(
|
| 123 |
+
x=coords[:, 0],
|
| 124 |
+
y=coords[:, 1],
|
| 125 |
+
z=coords[:, 2],
|
| 126 |
+
mode='markers+text',
|
| 127 |
+
text=characters,
|
| 128 |
+
textposition="top center",
|
| 129 |
+
textfont_size=8,
|
| 130 |
+
marker=dict(
|
| 131 |
+
size=6,
|
| 132 |
+
opacity=0.7,
|
| 133 |
+
color=coords[:, 0], # Color by first component
|
| 134 |
+
colorscale='Viridis',
|
| 135 |
+
showscale=True
|
| 136 |
+
),
|
| 137 |
+
hovertemplate='<b>%{text}</b><br>' +
|
| 138 |
+
f'{method} 1: %{{x:.3f}}<br>' +
|
| 139 |
+
f'{method} 2: %{{y:.3f}}<br>' +
|
| 140 |
+
f'{method} 3: %{{z:.3f}}<br>' +
|
| 141 |
+
'<extra></extra>'
|
| 142 |
+
)])
|
| 143 |
+
|
| 144 |
+
fig.update_layout(
|
| 145 |
+
title=f"{title} - {method}",
|
| 146 |
+
scene=dict(
|
| 147 |
+
xaxis_title=f"{method} Component 1",
|
| 148 |
+
yaxis_title=f"{method} Component 2",
|
| 149 |
+
zaxis_title=f"{method} Component 3"
|
| 150 |
+
),
|
| 151 |
+
height=600
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
return fig
|
| 155 |
+
|
| 156 |
+
# Streamlit App
|
| 157 |
+
def main():
|
| 158 |
+
st.set_page_config(
|
| 159 |
+
page_title="GoT Character Similarity Explorer",
|
| 160 |
+
page_icon="⚔️",
|
| 161 |
+
layout="wide"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
st.title("⚔️ Game of Thrones Character Similarity Explorer")
|
| 165 |
+
|
| 166 |
+
# Load data
|
| 167 |
+
characters_df, character_names, sbert_embeddings, tfidf_embeddings = load_data()
|
| 168 |
+
|
| 169 |
+
# Create tabs
|
| 170 |
+
tab1, tab2 = st.tabs(["🔍 Character Similarity", "📊 Dimensionality Reduction"])
|
| 171 |
+
|
| 172 |
+
with tab1:
|
| 173 |
+
st.markdown("Select a model and character to view top semantic matches!")
|
| 174 |
+
|
| 175 |
+
# Sidebar controls
|
| 176 |
+
with st.sidebar:
|
| 177 |
+
st.header("Settings")
|
| 178 |
+
model_type = st.radio(
|
| 179 |
+
"Select Embedding Model:",
|
| 180 |
+
["SBERT", "TFIDF"],
|
| 181 |
+
help="Choose between SBERT (semantic) or TF-IDF (keyword-based) similarity"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
selected_character = st.selectbox(
|
| 185 |
+
"Choose Character:",
|
| 186 |
+
character_names,
|
| 187 |
+
help="Select a character to find similar ones"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
if st.button("Find Similar Characters", type="primary"):
|
| 191 |
+
st.session_state.search_clicked = True
|
| 192 |
+
else:
|
| 193 |
+
st.session_state.search_clicked = getattr(st.session_state, 'search_clicked', False)
|
| 194 |
+
|
| 195 |
+
# Main content
|
| 196 |
+
if st.session_state.search_clicked and selected_character:
|
| 197 |
+
st.subheader(f"Characters similar to **{selected_character}** (using {model_type})")
|
| 198 |
+
|
| 199 |
+
# Get recommendations
|
| 200 |
+
results = recommend_characters(
|
| 201 |
+
model_type, selected_character, characters_df, sbert_embeddings, tfidf_embeddings
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
if results:
|
| 205 |
+
# Display in columns
|
| 206 |
+
cols = st.columns(5)
|
| 207 |
+
|
| 208 |
+
for idx, (name, image_path, similarity) in enumerate(results):
|
| 209 |
+
with cols[idx]:
|
| 210 |
+
if image_path and os.path.exists(image_path):
|
| 211 |
+
try:
|
| 212 |
+
image = Image.open(image_path)
|
| 213 |
+
st.image(image, use_container_width=True)
|
| 214 |
+
except Exception as e:
|
| 215 |
+
st.error(f"Could not load image: {e}")
|
| 216 |
+
else:
|
| 217 |
+
st.info("No image available")
|
| 218 |
+
|
| 219 |
+
st.markdown(f"**{name}**")
|
| 220 |
+
st.caption(f"Similarity: {similarity:.3f}")
|
| 221 |
+
else:
|
| 222 |
+
st.error("Character not found or no similar characters available.")
|
| 223 |
+
|
| 224 |
+
else:
|
| 225 |
+
# Welcome message
|
| 226 |
+
st.info("👈 Select a character from the sidebar and click 'Find Similar Characters' to get started!")
|
| 227 |
+
|
| 228 |
+
# Show some stats
|
| 229 |
+
col1, col2, col3 = st.columns(3)
|
| 230 |
+
with col1:
|
| 231 |
+
st.metric("Total Characters", len(character_names))
|
| 232 |
+
with col2:
|
| 233 |
+
st.metric("Embedding Models", "2")
|
| 234 |
+
with col3:
|
| 235 |
+
st.metric("Similarity Algorithm", "Cosine")
|
| 236 |
+
|
| 237 |
+
with tab2:
|
| 238 |
+
st.markdown("### Interactive Dimensionality Reduction Visualizations")
|
| 239 |
+
st.markdown("Explore character embeddings in 2D and 3D space using t-SNE and PCA")
|
| 240 |
+
|
| 241 |
+
# Controls for visualization
|
| 242 |
+
col1, col2, col3 = st.columns(3)
|
| 243 |
+
|
| 244 |
+
with col1:
|
| 245 |
+
viz_model = st.selectbox(
|
| 246 |
+
"Embedding Model:",
|
| 247 |
+
["SBERT", "TFIDF"],
|
| 248 |
+
key="viz_model"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
with col2:
|
| 252 |
+
viz_method = st.selectbox(
|
| 253 |
+
"Reduction Method:",
|
| 254 |
+
["t-SNE", "PCA"],
|
| 255 |
+
key="viz_method"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
with col3:
|
| 259 |
+
viz_dims = st.selectbox(
|
| 260 |
+
"Dimensions:",
|
| 261 |
+
["2D", "3D"],
|
| 262 |
+
key="viz_dims"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Additional parameters for t-SNE
|
| 266 |
+
if viz_method == "t-SNE":
|
| 267 |
+
perplexity = st.slider(
|
| 268 |
+
"Perplexity (t-SNE parameter):",
|
| 269 |
+
min_value=5,
|
| 270 |
+
max_value=50,
|
| 271 |
+
value=30,
|
| 272 |
+
help="Lower values focus on local structure, higher values on global structure"
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Generate visualization button
|
| 276 |
+
if st.button("Generate Visualization", type="primary"):
|
| 277 |
+
with st.spinner(f"Computing {viz_method} {viz_dims} for {viz_model} embeddings..."):
|
| 278 |
+
# Get the right embeddings
|
| 279 |
+
embeddings = np.array(sbert_embeddings) if viz_model == "SBERT" else np.array(tfidf_embeddings)
|
| 280 |
+
characters = characters_df['character'].tolist()
|
| 281 |
+
|
| 282 |
+
try:
|
| 283 |
+
# Compute coordinates based on method and dimensions
|
| 284 |
+
if viz_method == "t-SNE" and viz_dims == "2D":
|
| 285 |
+
coords = compute_tsne_2d(embeddings, perplexity=perplexity if viz_method == "t-SNE" else 30)
|
| 286 |
+
fig = create_2d_plot(coords, characters, f"{viz_model} Embeddings", "t-SNE")
|
| 287 |
+
|
| 288 |
+
elif viz_method == "t-SNE" and viz_dims == "3D":
|
| 289 |
+
coords = compute_tsne_3d(embeddings, perplexity=perplexity if viz_method == "t-SNE" else 30)
|
| 290 |
+
fig = create_3d_plot(coords, characters, f"{viz_model} Embeddings", "t-SNE")
|
| 291 |
+
|
| 292 |
+
elif viz_method == "PCA" and viz_dims == "2D":
|
| 293 |
+
coords = compute_pca_2d(embeddings)
|
| 294 |
+
fig = create_2d_plot(coords, characters, f"{viz_model} Embeddings", "PCA")
|
| 295 |
+
|
| 296 |
+
elif viz_method == "PCA" and viz_dims == "3D":
|
| 297 |
+
coords = compute_pca_3d(embeddings)
|
| 298 |
+
fig = create_3d_plot(coords, characters, f"{viz_model} Embeddings", "PCA")
|
| 299 |
+
|
| 300 |
+
# Display the plot
|
| 301 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 302 |
+
|
| 303 |
+
# Show some information about the visualization
|
| 304 |
+
st.info(f"""
|
| 305 |
+
**Visualization Info:**
|
| 306 |
+
- Model: {viz_model}
|
| 307 |
+
- Method: {viz_method} {viz_dims}
|
| 308 |
+
- Characters: {len(characters)}
|
| 309 |
+
- Original dimensions: {embeddings.shape[1]}
|
| 310 |
+
""" + (f"- Perplexity: {perplexity}" if viz_method == "t-SNE" else ""))
|
| 311 |
+
|
| 312 |
+
except Exception as e:
|
| 313 |
+
st.error(f"Error generating visualization: {str(e)}")
|
| 314 |
+
|
| 315 |
+
# Information about methods
|
| 316 |
+
with st.expander("ℹ️ About Dimensionality Reduction Methods"):
|
| 317 |
+
st.markdown("""
|
| 318 |
+
**t-SNE (t-Distributed Stochastic Neighbor Embedding):**
|
| 319 |
+
- Great for visualizing clusters and local neighborhoods
|
| 320 |
+
- Non-linear method that preserves local structure
|
| 321 |
+
- Good for finding groups of similar characters
|
| 322 |
+
- Perplexity controls local vs global structure focus
|
| 323 |
+
|
| 324 |
+
**PCA (Principal Component Analysis):**
|
| 325 |
+
- Linear method that preserves global variance
|
| 326 |
+
- Shows the main directions of variation in the data
|
| 327 |
+
- Faster computation than t-SNE
|
| 328 |
+
- Components have interpretable meaning
|
| 329 |
+
|
| 330 |
+
**2D vs 3D:**
|
| 331 |
+
- 2D is easier to interpret and interact with
|
| 332 |
+
- 3D can reveal additional structure but may be harder to read
|
| 333 |
+
""")
|
| 334 |
+
|
| 335 |
+
if __name__ == "__main__":
|
| 336 |
+
main()
|
characters_list_got.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:edfff5a75d926592b2f646ab7e88eece666b7ff3dcf78a599f010f88422fd0af
|
| 3 |
+
size 1810
|
embeddings_got.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcc7af34e18c61e74630ba2446ad1773dfd47c2054b47c56382986c3d947d305
|
| 3 |
+
size 377714
|
tfidf_embeddings_got.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb3e10c1b896b2a42d0fb774f6219122ceefa09669ab9b46e7c9c893d9c4c9aa
|
| 3 |
+
size 9782794
|