DanToni commited on
Commit
b1c7f4d
·
1 Parent(s): d4b55c9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +272 -0
app.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ from transformers.activations import get_activation
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM
9
+
10
+
11
+ st.title('GPT2: To see all prompt outlines: https://huggingface.co/BigSalmon/BigSalmon/InformalToFormalLincoln91Paraphrase')
12
+
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+
15
+ @st.cache(allow_output_mutation=True)
16
+ def get_model():
17
+ tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincolnMediumParaphraseConcise")
18
+ model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnMediumParaphraseConcise")
19
+
20
+ tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")
21
+ model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln91Paraphrase")
22
+
23
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
24
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
25
+
26
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")
27
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")
28
+
29
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
30
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln86Paraphrase")
31
+
32
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
33
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
34
+
35
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
36
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln79Paraphrase")
37
+
38
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")
39
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln74Paraphrase")
40
+
41
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")
42
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln72Paraphrase")
43
+
44
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")
45
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln64Paraphrase")
46
+
47
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")
48
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln60Paraphrase")
49
+
50
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")
51
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BInformalToFormal")
52
+
53
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln55")
54
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln55")
55
+
56
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln51")
57
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln51")
58
+
59
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln45")
60
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln49")
61
+
62
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln43")
63
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln43")
64
+
65
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln41")
66
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
67
+
68
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln38")
69
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln38")
70
+
71
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln37")
72
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln37")
73
+
74
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln36")
75
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln36")
76
+
77
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
78
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
79
+
80
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln35")
81
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln35")
82
+
83
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln31")
84
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31")
85
+
86
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln21")
87
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
88
+
89
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsOneSent")
90
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsOneSent")
91
+
92
+ #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsToSentence")
93
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsToSentence")
94
+
95
+ return model, tokenizer
96
+
97
+ model, tokenizer = get_model()
98
+
99
+ g = """informal english: garage band has made people who know nothing about music good at creating music.
100
+ Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).
101
+ informal english: chrome extensions can make doing regular tasks much easier to get done.
102
+ Translated into the Style of Abraham Lincoln: chrome extensions ( yield the boon of time-saving convenience / ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks / turbocharges the velocity with which one can conduct their obligations ).
103
+ informal english: broadband is finally expanding to rural areas, a great development that will thrust them into modern life.
104
+ Translated into the Style of Abraham Lincoln: broadband is ( ( finally / at last / after years of delay ) arriving in remote locations / springing to life in far-flung outposts / inching into even the most backwater corners of the nation ) that will leap-frog them into the twenty-first century.
105
+ informal english: google translate has made talking to people who do not share your language easier.
106
+ Translated into the Style of Abraham Lincoln: google translate ( imparts communicability to individuals whose native tongue differs / mitigates the trials of communication across linguistic barriers / hastens the bridging of semantic boundaries / mollifies the complexity of multilingual communication / avails itself to the internationalization of discussion / flexes its muscles to abet intercultural conversation / calms the tides of linguistic divergence ).
107
+ informal english: corn fields are all across illinois, visible once you leave chicago.
108
+ Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
109
+ informal english: """
110
+
111
+ number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 100)
112
+ log_nums = st.sidebar.slider("How Many Log Outputs?", 50, 600)
113
+
114
+ def BestProbs(prompt):
115
+ prompt = prompt.strip()
116
+ text = tokenizer.encode(prompt)
117
+ myinput, past_key_values = torch.tensor([text]), None
118
+ myinput = myinput
119
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
120
+ logits = logits[0,-1]
121
+ probabilities = torch.nn.functional.softmax(logits)
122
+ best_logits, best_indices = logits.topk(10)
123
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
124
+ for i in best_words[0:10]:
125
+ print("_______")
126
+ st.write(f"${i} $\n")
127
+ f = (f"${i} $\n")
128
+ m = (prompt + f"{i}")
129
+ BestProbs2(m)
130
+ return f
131
+
132
+ def BestProbs2(prompt):
133
+ prompt = prompt.strip()
134
+ text = tokenizer.encode(prompt)
135
+ myinput, past_key_values = torch.tensor([text]), None
136
+ myinput = myinput
137
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
138
+ logits = logits[0,-1]
139
+ probabilities = torch.nn.functional.softmax(logits)
140
+ best_logits, best_indices = logits.topk(20)
141
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
142
+ for i in best_words[0:20]:
143
+ print(i)
144
+ st.write(i)
145
+
146
+ def LogProbs(prompt):
147
+ col1 = []
148
+ col2 = []
149
+ prompt = prompt.strip()
150
+ text = tokenizer.encode(prompt)
151
+ myinput, past_key_values = torch.tensor([text]), None
152
+ myinput = myinput
153
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
154
+ logits = logits[0,-1]
155
+ probabilities = torch.nn.functional.softmax(logits)
156
+ best_logits, best_indices = logits.topk(10)
157
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
158
+ for i in best_words[0:10]:
159
+ print("_______")
160
+ f = i
161
+ col1.append(f)
162
+ m = (prompt + f"{i}")
163
+ #print("^^" + f + " ^^")
164
+ prompt = m.strip()
165
+ text = tokenizer.encode(prompt)
166
+ myinput, past_key_values = torch.tensor([text]), None
167
+ myinput = myinput
168
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
169
+ logits = logits[0,-1]
170
+ probabilities = torch.nn.functional.softmax(logits)
171
+ best_logits, best_indices = logits.topk(20)
172
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
173
+ for i in best_words[0:20]:
174
+ #print(i)
175
+ col2.append(i)
176
+ #print(col1)
177
+ #print(col2)
178
+ d = {col1[0]: [col2[0], col2[1], col2[2], col2[3], col2[4], col2[5], col2[6], col2[7], col2[8], col2[9], col2[10], col2[11], col2[12], col2[13], col2[14], col2[15], col2[16], col2[17], col2[18], col2[19]],
179
+ col1[1]: [col2[20], col2[21], col2[22], col2[23], col2[24], col2[25], col2[26], col2[27], col2[28], col2[29], col2[30], col2[31], col2[32], col2[33], col2[34], col2[35], col2[36], col2[37], col2[38], col2[39]],
180
+ col1[2]: [col2[40], col2[41], col2[42], col2[43], col2[44], col2[45], col2[46], col2[47], col2[48], col2[49], col2[50], col2[51], col2[52], col2[53], col2[54], col2[55], col2[56], col2[57], col2[58], col2[59]],
181
+ col1[3]: [col2[60], col2[61], col2[62], col2[63], col2[64], col2[65], col2[66], col2[67], col2[68], col2[69], col2[70], col2[71], col2[72], col2[73], col2[74], col2[75], col2[76], col2[77], col2[78], col2[79]],
182
+ col1[4]: [col2[80], col2[81], col2[82], col2[83], col2[84], col2[85], col2[86], col2[87], col2[88], col2[89], col2[90], col2[91], col2[92], col2[93], col2[94], col2[95], col2[96], col2[97], col2[98], col2[99]],
183
+ col1[5]: [col2[100], col2[101], col2[102], col2[103], col2[104], col2[105], col2[106], col2[107], col2[108], col2[109], col2[110], col2[111], col2[112], col2[113], col2[114], col2[115], col2[116], col2[117], col2[118], col2[119]],
184
+ col1[6]: [col2[120], col2[121], col2[122], col2[123], col2[124], col2[125], col2[126], col2[127], col2[128], col2[129], col2[130], col2[131], col2[132], col2[133], col2[134], col2[135], col2[136], col2[137], col2[138], col2[139]],
185
+ col1[7]: [col2[140], col2[141], col2[142], col2[143], col2[144], col2[145], col2[146], col2[147], col2[148], col2[149], col2[150], col2[151], col2[152], col2[153], col2[154], col2[155], col2[156], col2[157], col2[158], col2[159]],
186
+ col1[8]: [col2[160], col2[161], col2[162], col2[163], col2[164], col2[165], col2[166], col2[167], col2[168], col2[169], col2[170], col2[171], col2[172], col2[173], col2[174], col2[175], col2[176], col2[177], col2[178], col2[179]],
187
+ col1[9]: [col2[180], col2[181], col2[182], col2[183], col2[184], col2[185], col2[186], col2[187], col2[188], col2[189], col2[190], col2[191], col2[192], col2[193], col2[194], col2[195], col2[196], col2[197], col2[198], col2[199]]}
188
+ df = pd.DataFrame(data=d)
189
+ print(df)
190
+ st.write(df)
191
+ return df
192
+
193
+ def BestProbs5(prompt):
194
+ prompt = prompt.strip()
195
+ text = tokenizer.encode(prompt)
196
+ myinput, past_key_values = torch.tensor([text]), None
197
+ myinput = myinput
198
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
199
+ logits = logits[0,-1]
200
+ probabilities = torch.nn.functional.softmax(logits)
201
+ best_logits, best_indices = logits.topk(number_of_outputs)
202
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
203
+ for i in best_words[0:number_of_outputs]:
204
+ #print(i)
205
+ print("\n")
206
+ g = (prompt + i)
207
+ st.write(g)
208
+ l = run_generate(g, "hey")
209
+ st.write(l)
210
+
211
+ def run_generate(text, bad_words):
212
+ yo = []
213
+ input_ids = tokenizer.encode(text, return_tensors='pt')
214
+ res = len(tokenizer.encode(text))
215
+ bad_words = bad_words.split()
216
+ bad_word_ids = [[7829], [40940]]
217
+ for bad_word in bad_words:
218
+ bad_word = " " + bad_word
219
+ ids = tokenizer(bad_word).input_ids
220
+ bad_word_ids.append(ids)
221
+ sample_outputs = model.generate(
222
+ input_ids,
223
+ do_sample=True,
224
+ max_length= res + 5,
225
+ min_length = res + 5,
226
+ top_k=50,
227
+ temperature=1.0,
228
+ num_return_sequences=3,
229
+ bad_words_ids=bad_word_ids
230
+ )
231
+ for i in range(3):
232
+ e = tokenizer.decode(sample_outputs[i])
233
+ e = e.replace(text, "")
234
+ yo.append(e)
235
+ print(yo)
236
+ return yo
237
+
238
+ with st.form(key='my_form'):
239
+ prompt = st.text_area(label='Enter sentence', value=g, height=500)
240
+ submit_button = st.form_submit_button(label='Submit')
241
+ submit_button2 = st.form_submit_button(label='Fast Forward')
242
+ submit_button3 = st.form_submit_button(label='Fast Forward 2.0')
243
+ submit_button4 = st.form_submit_button(label='Get Top')
244
+
245
+ if submit_button:
246
+ with torch.no_grad():
247
+ text = tokenizer.encode(prompt)
248
+ myinput, past_key_values = torch.tensor([text]), None
249
+ myinput = myinput
250
+ myinput= myinput.to(device)
251
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
252
+ logits = logits[0,-1]
253
+ probabilities = torch.nn.functional.softmax(logits)
254
+ best_logits, best_indices = logits.topk(log_nums)
255
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
256
+ text.append(best_indices[0].item())
257
+ best_probabilities = probabilities[best_indices].tolist()
258
+ words = []
259
+ st.write(best_words)
260
+ if submit_button2:
261
+ print("----")
262
+ st.write("___")
263
+ m = LogProbs(prompt)
264
+ st.write("___")
265
+ st.write(m)
266
+ st.write("___")
267
+ if submit_button3:
268
+ print("----")
269
+ st.write("___")
270
+ st.write(BestProbs)
271
+ if submit_button4:
272
+ BestProbs5(prompt)