Davlan commited on
Commit
252ce9b
·
verified ·
1 Parent(s): cb95752

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_evals/
2
+ venv/
3
+ __pycache__/
4
+ .env
5
+ .ipynb_checkpoints
6
+ *ipynb
7
+ .vscode/
8
+ .idea/
9
+ eval-queue/
10
+ eval-results/
11
+ eval-queue-bk/
12
+ eval-results-bk/
13
+ logs/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
+ autoupdate_schedule: quarterly
22
+
23
+ repos:
24
+ - repo: https://github.com/pre-commit/pre-commit-hooks
25
+ rev: v4.3.0
26
+ hooks:
27
+ - id: check-yaml
28
+ - id: check-case-conflict
29
+ - id: detect-private-key
30
+ - id: check-added-large-files
31
+ args: ['--maxkb=1000']
32
+ - id: requirements-txt-fixer
33
+ - id: end-of-file-fixer
34
+ - id: trailing-whitespace
35
+
36
+ - repo: https://github.com/PyCQA/isort
37
+ rev: 5.12.0
38
+ hooks:
39
+ - id: isort
40
+ name: Format imports
41
+
42
+ - repo: https://github.com/psf/black
43
+ rev: 22.12.0
44
+ hooks:
45
+ - id: black
46
+ name: Format code
47
+ additional_dependencies: ['click==8.0.2']
48
+
49
+ - repo: https://github.com/charliermarsh/ruff-pre-commit
50
+ # Ruff version.
51
+ rev: 'v0.0.267'
52
+ hooks:
53
+ - id: ruff
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,12 +1,46 @@
1
  ---
2
- title: Msteb Leaderboard
3
- emoji:
4
- colorFrom: pink
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.49.1
8
  app_file: app.py
9
- pinned: false
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: mSTEB Leaderboard
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
  sdk: gradio
 
7
  app_file: app.py
8
+ pinned: true
9
+ license: apache-2.0
10
+ short_description: Leaderboard for mSTEB benchmark
11
+ sdk_version: 5.19.0
12
  ---
13
 
14
+ # Start the configuration
15
+
16
+ Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
17
+
18
+ Results files should have the following format and be stored as json files:
19
+ ```json
20
+ {
21
+ "config": {
22
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
23
+ "model_name": "path of the model on the hub: org/model",
24
+ "model_sha": "revision on the hub",
25
+ },
26
+ "results": {
27
+ "task_name": {
28
+ "metric_name": score,
29
+ },
30
+ "task_name2": {
31
+ "metric_name": score,
32
+ }
33
+ }
34
+ }
35
+ ```
36
+
37
+ Request files are created automatically by this tool.
38
+
39
+ If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
40
+
41
+ # Code logic for more complex edits
42
+
43
+ You'll find
44
+ - the main table' columns names and properties in `src/display/utils.py`
45
+ - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
46
+ - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
app.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
+ import pandas as pd
4
+ from apscheduler.schedulers.background import BackgroundScheduler
5
+ from huggingface_hub import snapshot_download
6
+
7
+ from src.about import (
8
+ CITATION_BUTTON_LABEL,
9
+ CITATION_BUTTON_TEXT,
10
+ EVALUATION_QUEUE_TEXT,
11
+ INTRODUCTION_TEXT,
12
+ LLM_BENCHMARKS_TEXT,
13
+ TITLE,
14
+ )
15
+ from src.display.css_html_js import custom_css
16
+ from src.display.utils import (
17
+ BENCHMARK_COLS,
18
+ SPEECH_BENCHMARK_COLS,
19
+ COLS,
20
+ COLS_SPEECH,
21
+ EVAL_COLS,
22
+ EVAL_TYPES,
23
+ AutoEvalColumn,
24
+ AutoEvalColumnSpeech,
25
+ ModelType,
26
+ fields,
27
+ WeightType,
28
+ Precision, REGION_MAP
29
+ )
30
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
31
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
32
+ from src.submission.submit import handle_csv_submission
33
+
34
+ text_sample_path = "src/submission_samples/model_name_text.csv"
35
+ speech_sample_path = "src/submission_samples/model_name_speech.csv"
36
+
37
+
38
+ def restart_space():
39
+ API.restart_space(repo_id=REPO_ID)
40
+
41
+
42
+ ### Space initialisation
43
+ try:
44
+ print(EVAL_REQUESTS_PATH)
45
+ snapshot_download(
46
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
47
+ token=TOKEN
48
+ )
49
+ except Exception:
50
+ restart_space()
51
+ try:
52
+ print(EVAL_RESULTS_PATH)
53
+ snapshot_download(
54
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
55
+ token=TOKEN
56
+ )
57
+ except Exception:
58
+ restart_space()
59
+
60
+
61
+ (
62
+ finished_eval_queue_df,
63
+ running_eval_queue_df,
64
+ pending_eval_queue_df,
65
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
66
+
67
+
68
+ def init_leaderboard(dataframe, result_type='text'):
69
+ if dataframe is None or dataframe.empty:
70
+ raise ValueError("Leaderboard DataFrame is empty or None.")
71
+ column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech
72
+
73
+ return Leaderboard(
74
+ value=dataframe,
75
+ datatype=[c.type for c in fields(column_class)],
76
+ select_columns=SelectColumns(
77
+ default_selection=[c.name for c in fields(column_class) if c.displayed_by_default],
78
+ cant_deselect=[c.name for c in fields(column_class) if c.never_hidden],
79
+ label="Select Columns to Display:",
80
+ ),
81
+ # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
82
+ search_columns=[column_class.model.name],
83
+ hide_columns=[c.name for c in fields(column_class) if c.hidden],
84
+ filter_columns=[
85
+ # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
86
+ # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
87
+ # ColumnFilter(
88
+ # AutoEvalColumn.params.name,
89
+ # type="slider",
90
+ # min=0.01,
91
+ # max=150,
92
+ # label="Select the number of parameters (B)",
93
+ # ),
94
+ # ColumnFilter(
95
+ # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
96
+ # ),
97
+ ],
98
+ bool_checkboxgroup_label="Hide models",
99
+ interactive=False,
100
+ )
101
+
102
+
103
+ leaderboard_dataframes = {
104
+ region: get_leaderboard_df(
105
+ EVAL_RESULTS_PATH,
106
+ EVAL_REQUESTS_PATH,
107
+ COLS,
108
+ BENCHMARK_COLS,
109
+ region if region != "All" else None,
110
+ result_type="text"
111
+ )
112
+ for region in REGION_MAP.values()
113
+ }
114
+
115
+ leaderboard_dataframes_speech = {
116
+ region: get_leaderboard_df(
117
+ EVAL_RESULTS_PATH,
118
+ EVAL_REQUESTS_PATH,
119
+ COLS_SPEECH,
120
+ SPEECH_BENCHMARK_COLS,
121
+ region if region != "All" else None,
122
+ result_type="speech"
123
+ )
124
+ for region in REGION_MAP.values()
125
+ }
126
+ # Preload leaderboard blocks
127
+ js_switch_code = """
128
+ (displayRegion) => {
129
+ const regionMap = {
130
+ "All": "All",
131
+ "Africa": "Africa",
132
+ "Americas/Oceania": "Americas_Oceania",
133
+ "Asia (S)": "Asia_S",
134
+ "Asia (SE)": "Asia_SE",
135
+ "Asia (W, C)": "Asia_W_C",
136
+ "Asia (E)": "Asia_E",
137
+ "Europe (W, N, S)": "Europe_W_N_S",
138
+ "Europe (E)": "Europe_E"
139
+ };
140
+ const region = regionMap[displayRegion];
141
+ document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible"));
142
+ const target = document.getElementById("leaderboard-" + region);
143
+ if (target) {
144
+ target.classList.add("visible");
145
+ // 🧠 Trigger reflow to fix row cutoff
146
+ void target.offsetHeight; // Trigger reflow
147
+ target.style.display = "none"; // Hide momentarily
148
+ requestAnimationFrame(() => {
149
+ target.style.display = "";
150
+ });
151
+ }
152
+ }
153
+ """
154
+
155
+ demo = gr.Blocks(css=custom_css)
156
+ with demo:
157
+ gr.HTML(TITLE)
158
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
159
+
160
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
161
+ with gr.TabItem("🏅 mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0):
162
+ with gr.Row():
163
+ region_dropdown = gr.Dropdown(
164
+ choices=list(REGION_MAP.keys()),
165
+ label="Select Region",
166
+ value="All",
167
+ interactive=True,
168
+ )
169
+
170
+ # Region-specific leaderboard containers
171
+ for display_name, region_key in REGION_MAP.items():
172
+ with gr.Column(
173
+ elem_id=f"leaderboard-{region_key}",
174
+ elem_classes=["visible"] if region_key == "All" else []
175
+ ):
176
+ init_leaderboard(leaderboard_dataframes[region_key], result_type="text")
177
+
178
+ # JS hook to toggle visible leaderboard
179
+ region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown])
180
+
181
+ with gr.TabItem("🗣️ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1):
182
+ with gr.Row():
183
+ speech_region_dropdown = gr.Dropdown(
184
+ choices=list(REGION_MAP.keys()),
185
+ label="Select Region",
186
+ value="All",
187
+ interactive=True,
188
+ )
189
+
190
+ for display_name, region_key in REGION_MAP.items():
191
+ with gr.Column(
192
+ elem_id=f"speech-leaderboard-{region_key}",
193
+ elem_classes=["visible"] if region_key == "All" else []
194
+ ):
195
+ init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech')
196
+
197
+ speech_region_dropdown.change(
198
+ None,
199
+ js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"),
200
+ inputs=[speech_region_dropdown]
201
+ )
202
+
203
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
204
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
205
+
206
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
207
+ with gr.Column():
208
+ with gr.Row():
209
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
210
+
211
+ with gr.Row():
212
+ gr.File(
213
+ label="📄 Sample Text CSV",
214
+ value=text_sample_path,
215
+ interactive=False,
216
+ file_types=[".csv"]
217
+ )
218
+ gr.File(
219
+ label="📄 Sample Speech CSV",
220
+ value=speech_sample_path,
221
+ interactive=False,
222
+ file_types=[".csv"]
223
+ )
224
+ with gr.Row():
225
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
226
+
227
+ with gr.Column():
228
+ model_name_textbox = gr.Textbox(label="Model name")
229
+ result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text")
230
+ csv_file = gr.File(label="Upload CSV File", file_types=[".csv"])
231
+
232
+ submit_button = gr.Button("Submit Eval")
233
+ submission_result = gr.Markdown()
234
+
235
+ submit_button.click(
236
+ handle_csv_submission,
237
+ [
238
+ model_name_textbox,
239
+ csv_file,
240
+ result_type,
241
+ ],
242
+ submission_result,
243
+ )
244
+
245
+ with gr.Row():
246
+ with gr.Accordion("📙 Citation", open=False):
247
+ citation_button = gr.Textbox(
248
+ value=CITATION_BUTTON_TEXT,
249
+ label=CITATION_BUTTON_LABEL,
250
+ lines=20,
251
+ elem_id="citation-button",
252
+ show_copy_button=True,
253
+ )
254
+
255
+ scheduler = BackgroundScheduler()
256
+ scheduler.add_job(restart_space, "interval", seconds=1800)
257
+ scheduler.start()
258
+ demo.queue(default_concurrency_limit=40).launch()
notes.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The submission flow for the project is as follows:
2
+
3
+ When a csv is submitted, we store the csv in the msteb requests dataset in the folder that's appropriate
4
+ based on text or speech results.
5
+
6
+ Then this csv result is in the same flow converted into a json file and uploaded to results dataset.
7
+
8
+ This helps the leaderboard parse those results and display it.
9
+
10
+ There are validation checks for the csv being formatted correctly and that at least one result value is present.
11
+
12
+
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler
2
+ black
3
+ datasets
4
+ gradio
5
+ gradio[oauth]
6
+ gradio_leaderboard==0.0.13
7
+ gradio_client
8
+ huggingface-hub>=0.18.0
9
+ matplotlib
10
+ numpy
11
+ pandas
12
+ python-dateutil
13
+ tqdm
14
+ transformers
15
+ tokenizers>=0.15.0
16
+ sentencepiece
17
+ pydantic==2.10.6
src/about.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+
11
+ # Select your tasks here
12
+ # ---------------------------------------------------
13
+ class Tasks(Enum):
14
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ task0 = Task("lid", "acc", "LID")
16
+ task1 = Task("topic_classification", "acc", "TC")
17
+ task2 = Task("rc_qa", "acc", "RC-QA")
18
+ task3 = Task("nli", "acc", "NLI")
19
+ task4 = Task("machine_translation_xx_eng", "chrf", "MT (xx-en)")
20
+ task5 = Task("machine_translation_eng_xx", "chrf", "MT (en-xx)")
21
+
22
+ class SpeechTasks(Enum):
23
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
24
+ task0 = Task("lid", "acc", "LID")
25
+ task1 = Task("topic_classification", "acc", "TC")
26
+ task2 = Task("rc_qa", "acc", "RC-QA")
27
+ task3 = Task("asr", "cer", "ASR")
28
+ task4 = Task("s2tt_xx_eng", "chrf", "S2TT (xx-en)")
29
+ #task5 = Task("s2tt_eng_xx", "chrf", "S2TT (en-xx)")
30
+
31
+ NUM_FEWSHOT = 0 # Change with your few shot
32
+ # ---------------------------------------------------
33
+
34
+
35
+
36
+ # Your leaderboard name
37
+ TITLE = """<h1 align="center" id="space-title">mSTEB Leaderboard</h1>"""
38
+
39
+ # What does your leaderboard evaluate?
40
+ INTRODUCTION_TEXT = """
41
+ This leaderboard has the results of evaluation of models on mSTEB benchmark.
42
+ """
43
+
44
+ # Which evaluations are you running? how can people reproduce what you have?
45
+ LLM_BENCHMARKS_TEXT = f"""
46
+ ## Reproducibility
47
+ To reproduce our results please look at the github page for mSTEB:
48
+
49
+ https://github.com/McGill-NLP/mSTEB
50
+
51
+ """
52
+
53
+ EVALUATION_QUEUE_TEXT = """
54
+ ## Submit your results
55
+ Please provide the model name, csv file and select the appropriate result type to upload your evaluation results for mSTEB.
56
+
57
+ Kindly format the results in the same way as provided in the sample csv files below.
58
+ """
59
+
60
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
61
+ CITATION_BUTTON_TEXT = r"""
62
+ @misc{beyene2025mstebmassivelymultilingualevaluation,
63
+ title = {mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks},
64
+ author = {Luel Hagos Beyene and Vivek Verma and Min Ma and Jesujoba O. Alabi
65
+ and Fabian David Schmidt and Joyce Nakatumba-Nabende and
66
+ David Ifeoluwa Adelani},
67
+ year = {2025},
68
+ eprint = {2506.08400},
69
+ archivePrefix = {arXiv},
70
+ primaryClass = {cs.CL},
71
+ url = {https://arxiv.org/abs/2506.08400}
72
+ }
73
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
+ #leaderboard-table td:nth-child(2),
43
+ #leaderboard-table th:nth-child(2) {
44
+ max-width: 400px;
45
+ overflow: auto;
46
+ white-space: nowrap;
47
+ }
48
+
49
+ .tab-buttons button {
50
+ font-size: 20px;
51
+ }
52
+
53
+ #scale-logo {
54
+ border-style: none !important;
55
+ box-shadow: none;
56
+ display: block;
57
+ margin-left: auto;
58
+ margin-right: auto;
59
+ max-width: 600px;
60
+ }
61
+
62
+ #scale-logo .download {
63
+ display: none;
64
+ }
65
+ #filter_type{
66
+ border: 0;
67
+ padding-left: 0;
68
+ padding-top: 0;
69
+ }
70
+ #filter_type label {
71
+ display: flex;
72
+ }
73
+ #filter_type label > span{
74
+ margin-top: var(--spacing-lg);
75
+ margin-right: 0.5em;
76
+ }
77
+ #filter_type label > .wrap{
78
+ width: 103px;
79
+ }
80
+ #filter_type label > .wrap .wrap-inner{
81
+ padding: 2px;
82
+ }
83
+ #filter_type label > .wrap .wrap-inner input{
84
+ width: 1px
85
+ }
86
+ #filter-columns-type{
87
+ border:0;
88
+ padding:0.5;
89
+ }
90
+ #filter-columns-size{
91
+ border:0;
92
+ padding:0.5;
93
+ }
94
+ #box-filter > .form{
95
+ border: 0
96
+ }
97
+ [id^="leaderboard-"] {
98
+ display: none;
99
+ }
100
+ #leaderboard-All.visible,
101
+ #leaderboard-Africa.visible,
102
+ #leaderboard-Americas_Oceania.visible,
103
+ #leaderboard-Asia_S.visible,
104
+ #leaderboard-Asia_SE.visible,
105
+ #leaderboard-Asia_W_C.visible,
106
+ #leaderboard-Asia_E.visible,
107
+ #leaderboard-Europe_W_N_S.visible,
108
+ #leaderboard-Europe_E.visible {
109
+ display: block;
110
+ }
111
+
112
+
113
+ [id^="speech-leaderboard-"] {
114
+ display: none;
115
+ }
116
+ #speech-leaderboard-All.visible,
117
+ #speech-leaderboard-Africa.visible,
118
+ #speech-leaderboard-Americas_Oceania.visible,
119
+ #speech-leaderboard-Asia_S.visible,
120
+ #speech-leaderboard-Asia_SE.visible,
121
+ #speech-leaderboard-Asia_W_C.visible,
122
+ #speech-leaderboard-Asia_E.visible,
123
+ #speech-leaderboard-Europe_W_N_S.visible,
124
+ #speech-leaderboard-Europe_E.visible {
125
+ display: block;
126
+ }
127
+ """
128
+
129
+ get_window_url_params = """
130
+ function(url_params) {
131
+ const params = new URLSearchParams(window.location.search);
132
+ url_params = Object.fromEntries(params);
133
+ return url_params;
134
+ }
135
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def model_hyperlink(link, model_name):
2
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
+
4
+
5
+ def make_clickable_model(model_name):
6
+ link = f"https://huggingface.co/{model_name}"
7
+ return model_hyperlink(link, model_name)
8
+
9
+
10
+ def styled_error(error):
11
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
+
13
+
14
+ def styled_warning(warn):
15
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
+
17
+
18
+ def styled_message(message):
19
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
+
21
+
22
+ def has_no_nan_values(df, columns):
23
+ return df[columns].notna().all(axis=1)
24
+
25
+ def has_at_least_one_benchmark(df, columns):
26
+ return df[columns].notna().any(axis=1)
27
+
28
+ def has_nan_values(df, columns):
29
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.about import Tasks
7
+ from src.about import SpeechTasks
8
+
9
+ def fields(raw_class):
10
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
11
+
12
+
13
+ # These classes are for user facing column names,
14
+ # to avoid having to change them all around the code
15
+ # when a modif is needed
16
+ @dataclass
17
+ class ColumnContent:
18
+ name: str
19
+ type: str
20
+ displayed_by_default: bool
21
+ hidden: bool = False
22
+ never_hidden: bool = False
23
+
24
+ ## Leaderboard columns
25
+ auto_eval_column_dict = []
26
+ # Init
27
+ # auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("Model Type", "str", True, never_hidden=True)])
28
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+ #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️ (Class. Tasks)", "number", True)])
31
+ for task in Tasks:
32
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
+
34
+ ### Speech leaderboard columns
35
+ auto_eval_column_dict_speech = []
36
+ # Init
37
+ # auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("Model Type", "str", True, never_hidden=True)])
38
+ auto_eval_column_dict_speech.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
39
+ #Scores
40
+ auto_eval_column_dict_speech.append(["average", ColumnContent, ColumnContent("Average ⬆️ (Class. Tasks)", "number", True)])
41
+ for task in SpeechTasks:
42
+ auto_eval_column_dict_speech.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
43
+
44
+
45
+ # Model information
46
+ # auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
47
+ # auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
48
+ # auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
49
+ # auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
50
+ # auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
51
+ # auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
52
+ # auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
53
+ # auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
54
+ # auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
55
+
56
+ # We use make dataclass to dynamically fill the scores from Tasks
57
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
58
+ AutoEvalColumnSpeech = make_dataclass("AutoEvalColumnSpeech", auto_eval_column_dict_speech, frozen=True)
59
+
60
+ ## For the queue columns in the submission tab
61
+ @dataclass(frozen=True)
62
+ class EvalQueueColumn: # Queue column
63
+ model = ColumnContent("model", "markdown", True)
64
+ revision = ColumnContent("revision", "str", True)
65
+ private = ColumnContent("private", "bool", True)
66
+ precision = ColumnContent("precision", "str", True)
67
+ weight_type = ColumnContent("weight_type", "str", "Original")
68
+ status = ColumnContent("status", "str", True)
69
+
70
+ ## All the model information that we might need
71
+ @dataclass
72
+ class ModelDetails:
73
+ name: str
74
+ display_name: str = ""
75
+ symbol: str = "" # emoji
76
+
77
+
78
+ class ModelType(Enum):
79
+ PT = ModelDetails(name="pretrained", symbol="🟢")
80
+ FT = ModelDetails(name="fine-tuned", symbol="🔶")
81
+ IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
82
+ RL = ModelDetails(name="RL-tuned", symbol="🟦")
83
+ Unknown = ModelDetails(name="", symbol="?")
84
+
85
+ def to_str(self, separator=" "):
86
+ return f"{self.value.symbol}{separator}{self.value.name}"
87
+
88
+ @staticmethod
89
+ def from_str(type):
90
+ if "fine-tuned" in type or "🔶" in type:
91
+ return ModelType.FT
92
+ if "pretrained" in type or "🟢" in type:
93
+ return ModelType.PT
94
+ if "RL-tuned" in type or "🟦" in type:
95
+ return ModelType.RL
96
+ if "instruction-tuned" in type or "⭕" in type:
97
+ return ModelType.IFT
98
+ return ModelType.Unknown
99
+
100
+ class WeightType(Enum):
101
+ Adapter = ModelDetails("Adapter")
102
+ Original = ModelDetails("Original")
103
+ Delta = ModelDetails("Delta")
104
+
105
+ class Precision(Enum):
106
+ float16 = ModelDetails("float16")
107
+ bfloat16 = ModelDetails("bfloat16")
108
+ Unknown = ModelDetails("?")
109
+
110
+ def from_str(precision):
111
+ if precision in ["torch.float16", "float16"]:
112
+ return Precision.float16
113
+ if precision in ["torch.bfloat16", "bfloat16"]:
114
+ return Precision.bfloat16
115
+ return Precision.Unknown
116
+
117
+ # Column selection
118
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
119
+ COLS_SPEECH = [c.name for c in fields(AutoEvalColumnSpeech) if not c.hidden]
120
+
121
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
+
124
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
+ SPEECH_BENCHMARK_COLS = [t.value.col_name for t in SpeechTasks]
126
+
127
+ REGION_MAP = {
128
+ "All": "All",
129
+ "Africa": "Africa",
130
+ "Americas/Oceania": "Americas_Oceania",
131
+ "Asia (S)": "Asia_S",
132
+ "Asia (SE)": "Asia_SE",
133
+ "Asia (W, C)": "Asia_W_C",
134
+ "Asia (E)": "Asia_E",
135
+ "Europe (W, N, S)": "Europe_W_N_S",
136
+ "Europe (E)": "Europe_E",
137
+ }
138
+
src/envs.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # Info to change for your repository
6
+ # ----------------------------------
7
+ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
+
9
+ OWNER = "McGill-NLP" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
+ # ----------------------------------
11
+
12
+ REPO_ID = f"{OWNER}/msteb_leaderboard"
13
+ QUEUE_REPO = f"{OWNER}/msteb_requests"
14
+ RESULTS_REPO = f"{OWNER}/msteb_results"
15
+
16
+ # If you setup a cache later, just change HF_HOME
17
+ CACHE_PATH=os.getenv("HF_HOME", ".")
18
+
19
+ # Local caches
20
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
+ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
+ EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
+
25
+ API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, SpeechTasks
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
+ """
19
+ eval_name: str # org_model_precision (uid)
20
+ full_model: str # org/model (path on hub)
21
+ org: str
22
+ model: str
23
+ revision: str # commit hash, "" if main
24
+ results: dict
25
+ precision: Precision = Precision.Unknown
26
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
+ weight_type: WeightType = WeightType.Original # Original or Adapter
28
+ architecture: str = "Unknown"
29
+ license: str = "?"
30
+ likes: int = 0
31
+ num_params: int = 0
32
+ date: str = "" # submission date of request file
33
+ still_on_hub: bool = False
34
+ regions: dict = None
35
+
36
+ @classmethod
37
+ def init_from_json_file(self, json_filepath, result_type='speech'):
38
+ """Inits the result from the specific model result file"""
39
+ with open(json_filepath) as fp:
40
+ data = json.load(fp)
41
+
42
+ config = data.get("config")
43
+ regions = data.get("regions", {}) # Parse regions from JSON
44
+
45
+ # Precision
46
+ precision = Precision.from_str(config.get("model_dtype"))
47
+
48
+ # Get model and org
49
+ org_and_model = config.get("model_name", config.get("model_args", None))
50
+ org_and_model = org_and_model.split("/", 1)
51
+
52
+ if len(org_and_model) == 1:
53
+ org = None
54
+ model = org_and_model[0]
55
+ result_key = f"{model}_{precision.value.name}"
56
+ else:
57
+ org = org_and_model[0]
58
+ model = org_and_model[1]
59
+ result_key = f"{org}_{model}_{precision.value.name}"
60
+ full_model = "/".join(org_and_model)
61
+
62
+ still_on_hub, _, model_config = is_model_on_hub(
63
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
64
+ )
65
+ architecture = "?"
66
+ if model_config is not None:
67
+ architectures = getattr(model_config, "architectures", None)
68
+ if architectures:
69
+ architecture = ";".join(architectures)
70
+
71
+ # Extract results available in this file (some results are split in several files)
72
+ results = {}
73
+
74
+ task_enum = Tasks if result_type == "text" else SpeechTasks
75
+
76
+ for task in task_enum:
77
+ task = task.value
78
+
79
+ # We average all scores of a given metric (not all metrics are present in all files)
80
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
81
+ if accs.size == 0 or any([acc is None for acc in accs]):
82
+ continue
83
+
84
+ mean_acc = np.mean(accs) * 100.0
85
+ results[task.benchmark] = mean_acc
86
+
87
+ regions_processed_results = {}
88
+ for region, region_results in regions.items():
89
+ processed = {}
90
+ for task in task_enum:
91
+ task = task.value
92
+
93
+ # We average all scores of a given metric (not all metrics are present in all files)
94
+ accs = np.array([v.get(task.metric, None) for k, v in region_results.items() if task.benchmark == k])
95
+ if accs.size == 0 or any([acc is None for acc in accs]):
96
+ continue
97
+
98
+ mean_acc = np.mean(accs) * 100.0
99
+ processed[task.benchmark] = mean_acc
100
+ regions_processed_results[region] = processed
101
+ return self(
102
+ eval_name=result_key,
103
+ full_model=full_model,
104
+ org=org,
105
+ model=model,
106
+ results=results,
107
+ precision=precision,
108
+ revision= config.get("model_sha", ""),
109
+ still_on_hub=still_on_hub,
110
+ architecture=architecture,
111
+ regions=regions_processed_results
112
+ )
113
+
114
+ def update_with_request_file(self, requests_path):
115
+ """Finds the relevant request file for the current model and updates info with it"""
116
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
117
+
118
+ try:
119
+ with open(request_file, "r") as f:
120
+ request = json.load(f)
121
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
122
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
123
+ self.license = request.get("license", "?")
124
+ self.likes = request.get("likes", 0)
125
+ self.num_params = request.get("params", 0)
126
+ self.date = request.get("submitted_time", "")
127
+ except Exception:
128
+ print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
129
+
130
+ def to_dict(self, region=None, result_type='text'):
131
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
132
+ # print(self.results)
133
+ task_enum = Tasks if result_type == "text" else SpeechTasks
134
+
135
+ results = self.results if region is None else self.regions.get(region, {})
136
+ acc_values = [
137
+ results[task.value.benchmark]
138
+ for task in task_enum
139
+ if task.value.metric == "acc" and task.value.benchmark in results
140
+ ]
141
+ # print(acc_values)
142
+
143
+ average = sum(acc_values) / len(acc_values) if acc_values else None
144
+
145
+ # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
146
+ data_dict = {
147
+ "eval_name": self.eval_name, # not a column, just a save name,
148
+ # AutoEvalColumn.precision.name: self.precision.value.name,
149
+ # AutoEvalColumn.model_type.name: self.model_type.value.name,
150
+ # # AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
151
+ # AutoEvalColumn.weight_type.name: self.weight_type.value.name,
152
+ # AutoEvalColumn.architecture.name: self.architecture,
153
+ AutoEvalColumn.model.name: self.full_model,
154
+ # AutoEvalColumn.revision.name: self.revision,
155
+ AutoEvalColumn.average.name: average,
156
+ # AutoEvalColumn.license.name: self.license,
157
+ # AutoEvalColumn.likes.name: self.likes,
158
+ # AutoEvalColumn.params.name: self.num_params,
159
+ # AutoEvalColumn.still_on_hub.name: self.still_on_hub,
160
+ }
161
+
162
+ for task in task_enum:
163
+ if task.value.benchmark in results:
164
+ data_dict[task.value.col_name] = results[task.value.benchmark]
165
+ else:
166
+ data_dict[task.value.col_name] = None # or np.nan if preferred
167
+
168
+ return data_dict
169
+
170
+
171
+ def get_request_file_for_model(requests_path, model_name, precision):
172
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
173
+ request_files = os.path.join(
174
+ requests_path,
175
+ f"{model_name}_eval_request_*.json",
176
+ )
177
+ request_files = glob.glob(request_files)
178
+
179
+ # Select correct request file (precision)
180
+ request_file = ""
181
+ request_files = sorted(request_files, reverse=True)
182
+ for tmp_request_file in request_files:
183
+ with open(tmp_request_file, "r") as f:
184
+ req_content = json.load(f)
185
+ if (
186
+ req_content["status"] in ["FINISHED"]
187
+ and req_content["precision"] == precision.split(".")[-1]
188
+ ):
189
+ request_file = tmp_request_file
190
+ return request_file
191
+
192
+
193
+ def get_raw_eval_results(results_path: str, requests_path: str, result_type: str = "text") -> list[EvalResult]:
194
+ """From the path of the results folder root, extract all needed info for results"""
195
+ # result type
196
+ model_result_filepaths = []
197
+
198
+ for root, _, files in os.walk(results_path):
199
+ # We should only have json files in model results
200
+ if result_type == "text" and "msteb_text_results" not in root:
201
+ continue
202
+ if result_type == "speech" and "msteb_speech_results" not in root:
203
+ continue
204
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
205
+ continue
206
+
207
+ # Sort the files by date
208
+ try:
209
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
210
+ except dateutil.parser._parser.ParserError:
211
+ files = [files[-1]]
212
+
213
+ for file in files:
214
+ model_result_filepaths.append(os.path.join(root, file))
215
+
216
+ eval_results = {}
217
+ for model_result_filepath in model_result_filepaths:
218
+ # Creation of result
219
+ eval_result = EvalResult.init_from_json_file(model_result_filepath,result_type)
220
+ # print('testing this one')
221
+ # print(eval_result)
222
+ eval_result.update_with_request_file(requests_path)
223
+
224
+ # Store results of same eval together
225
+ eval_name = eval_result.eval_name
226
+ if eval_name in eval_results.keys():
227
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
228
+ else:
229
+ eval_results[eval_name] = eval_result
230
+
231
+ results = []
232
+ for v in eval_results.values():
233
+ try:
234
+ v.to_dict() # we test if the dict version is complete
235
+ results.append(v)
236
+ except KeyError: # not all eval values present
237
+ continue
238
+ # print('results')
239
+ # print(results)
240
+
241
+ return results
src/populate.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model, has_at_least_one_benchmark
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+
10
+
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, region=None, result_type="text") -> pd.DataFrame:
12
+ """Creates a dataframe from all the individual experiment results"""
13
+ raw_data = get_raw_eval_results(results_path, requests_path, result_type=result_type)
14
+ # this here if region is none gets main results. I have to pass region value here to get region based results
15
+ # and they should come.
16
+ all_data_json = [v.to_dict(region, result_type) for v in raw_data]
17
+ # print('all_data_json', all_data_json)
18
+ df = pd.DataFrame.from_records(all_data_json)
19
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
+ df = df[cols].round(decimals=2)
21
+ # filter out if any of the benchmarks have not been produced
22
+ df = df[has_at_least_one_benchmark(df, benchmark_cols)]
23
+ return df
24
+
25
+
26
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
27
+ """Creates the different dataframes for the evaluation queues requestes"""
28
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
29
+ all_evals = []
30
+
31
+ for entry in entries:
32
+ if ".json" in entry:
33
+ file_path = os.path.join(save_path, entry)
34
+ with open(file_path) as fp:
35
+ data = json.load(fp)
36
+
37
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
38
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
39
+
40
+ all_evals.append(data)
41
+ elif ".md" not in entry:
42
+ # this is a folder
43
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
44
+ for sub_entry in sub_entries:
45
+ file_path = os.path.join(save_path, entry, sub_entry)
46
+ with open(file_path) as fp:
47
+ data = json.load(fp)
48
+
49
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
50
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
51
+ all_evals.append(data)
52
+
53
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
54
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
55
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
56
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
57
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
58
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
59
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/result_samples/speech.json ADDED
File without changes
src/result_samples/text.json ADDED
File without changes
src/submission/check_validity.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import AutoTokenizer
12
+
13
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
+ try:
16
+ card = ModelCard.load(repo_id)
17
+ except huggingface_hub.utils.EntryNotFoundError:
18
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
+
20
+ # Enforce license metadata
21
+ if card.data.license is None:
22
+ if not ("license_name" in card.data and "license_link" in card.data):
23
+ return False, (
24
+ "License not found. Please add a license to your model card using the `license` metadata or a"
25
+ " `license_name`/`license_link` pair."
26
+ )
27
+
28
+ # Enforce card content
29
+ if len(card.text) < 200:
30
+ return False, "Please add a description to your model card, it is too short."
31
+
32
+ return True, ""
33
+
34
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
+ """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
+ try:
37
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
+ if test_tokenizer:
39
+ try:
40
+ tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
+ except ValueError as e:
42
+ return (
43
+ False,
44
+ f"uses a tokenizer which is not in a transformers release: {e}",
45
+ None
46
+ )
47
+ except Exception as e:
48
+ return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
+ return True, None, config
50
+
51
+ except ValueError:
52
+ return (
53
+ False,
54
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
+ None
56
+ )
57
+
58
+ except Exception as e:
59
+ return False, "was not found on hub!", None
60
+
61
+
62
+ def get_model_size(model_info: ModelInfo, precision: str):
63
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
+ try:
65
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
+ except (AttributeError, TypeError):
67
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
+
69
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
+ model_size = size_factor * model_size
71
+ return model_size
72
+
73
+ def get_model_arch(model_info: ModelInfo):
74
+ """Gets the model architecture from the configuration"""
75
+ return model_info.config.get("architectures", "Unknown")
76
+
77
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
78
+ """Gather a list of already submitted models to avoid duplicates"""
79
+ depth = 1
80
+ file_names = []
81
+ users_to_submission_dates = defaultdict(list)
82
+
83
+ for root, _, files in os.walk(requested_models_dir):
84
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
+ if current_depth == depth:
86
+ for file in files:
87
+ if not file.endswith(".json"):
88
+ continue
89
+ with open(os.path.join(root, file), "r") as f:
90
+ info = json.load(f)
91
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
+
93
+ # Select organisation
94
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
95
+ continue
96
+ organisation, _ = info["model"].split("/")
97
+ users_to_submission_dates[organisation].append(info["submitted_time"])
98
+
99
+ return set(file_names), users_to_submission_dates
src/submission/submit.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pandas as pd
4
+ from datetime import datetime, timezone
5
+
6
+ from src.about import Tasks, SpeechTasks
7
+ from src.display.formatting import styled_error, styled_message, styled_warning
8
+ from src.display.utils import REGION_MAP
9
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO, EVAL_RESULTS_PATH
10
+
11
+ REQUESTED_MODELS = None
12
+ USERS_TO_SUBMISSION_DATES = None
13
+
14
+
15
+ def handle_csv_submission(
16
+ model_name: str,
17
+ csv_file, # uploaded file path
18
+ result_type: str,
19
+ ):
20
+ if model_name == "" or model_name is None:
21
+ return styled_error("Please provide a model name.")
22
+ if csv_file is None:
23
+ return styled_error("Please provide a CSV file with results.")
24
+
25
+ df = pd.read_csv(csv_file)
26
+
27
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
28
+
29
+ # Save uploaded CSV
30
+ subdir = os.path.join(EVAL_REQUESTS_PATH, result_type)
31
+ os.makedirs(subdir, exist_ok=True)
32
+
33
+ filename = f"{current_time}_{model_name}_{result_type}_results.csv"
34
+ remote_path = f"msteb_{result_type}_requests/{filename}"
35
+
36
+ csv_save_path = os.path.join(subdir,filename)
37
+ df.to_csv(csv_save_path, index=False)
38
+
39
+ print(f"Uploading to {QUEUE_REPO}/{remote_path}")
40
+ API.upload_file(
41
+ path_or_fileobj=csv_save_path,
42
+ path_in_repo=remote_path,
43
+ repo_id=QUEUE_REPO,
44
+ repo_type="dataset", # or "model" if you made the repo that way
45
+ commit_message=f"Add {result_type} request for {model_name} at {current_time}",
46
+ )
47
+
48
+ # Remove the local file
49
+ os.remove(csv_save_path)
50
+ # this converts dataframe to json and uploads it to results
51
+
52
+
53
+ try:
54
+ convert_csv_to_json_and_upload(df, model_name, result_type)
55
+ except ValueError as e:
56
+ return styled_error(f"{str(e)}")
57
+ return styled_message(f"Results CSV successfully submitted for `{model_name}`!")
58
+
59
+ def find_task_by_col_name(col_name, enum_cls):
60
+ for task in enum_cls:
61
+ if task.value.col_name == col_name:
62
+ return task
63
+ return None
64
+ def convert_csv_to_json_and_upload(df: pd.DataFrame, model_name: str, result_type: str):
65
+ task_enum = Tasks if result_type == "text" else SpeechTasks
66
+
67
+ task_display_names = {t.value.col_name for t in task_enum}
68
+ region_names = df["Region"].tolist()
69
+ average_row = "Average (Micro)"
70
+
71
+ # --- Validation ---
72
+ df_columns = set(df.columns[1:]) # exclude Region column
73
+ if not df_columns.issubset(task_display_names):
74
+ extra = df_columns - task_display_names
75
+ raise ValueError(f"Extra columns in CSV: {extra}")
76
+ if average_row not in df["Region"].values:
77
+ raise ValueError("Missing row for 'Average (Micro)'")
78
+
79
+ data_region_names = [r for r in region_names if r != average_row]
80
+
81
+ for region in data_region_names:
82
+ if region not in REGION_MAP:
83
+ raise ValueError(f"Region '{region}' not found in REGION_MAP keys.")
84
+
85
+ # --- Build JSON ---
86
+ # I go over the regions in the CSV and create a JSON object.
87
+ model_json = {
88
+ "config": {"model_name": model_name},
89
+ "results": {},
90
+ "regions": {},
91
+ }
92
+ at_least_one_number = False
93
+
94
+ for _, row in df.iterrows():
95
+ region_display = row["Region"]
96
+
97
+ if region_display == average_row:
98
+ for col, val in row.items():
99
+ if col == "Region":
100
+ continue
101
+ task = find_task_by_col_name(col, task_enum)
102
+ if val is not None and not pd.isna(val) and isinstance(val, (int, float)):
103
+ print(f" value {val}")
104
+ at_least_one_number = True
105
+ model_json["results"][task.value.benchmark] = {task.value.metric: val/100}
106
+ else:
107
+ model_json["regions"][REGION_MAP[region_display]] = {}
108
+ for col, val in row.items():
109
+ if col == "Region":
110
+ continue
111
+ task = find_task_by_col_name(col, task_enum)
112
+ if val is not None and not pd.isna(val) and isinstance(val, (int, float)):
113
+ model_json["regions"][REGION_MAP[region_display]][task.value.benchmark] = {task.value.metric: val/100}
114
+
115
+ # Check if at least one number is present in the results
116
+ print(at_least_one_number)
117
+ if at_least_one_number is False:
118
+ raise ValueError("No valid numeric results found in the CSV. Please check your input.")
119
+
120
+ # --- Save locally ---
121
+ subdir = os.path.join(EVAL_RESULTS_PATH, result_type)
122
+ os.makedirs(subdir, exist_ok=True)
123
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
124
+ filename = f"{current_time}_{model_name}_{result_type}.json"
125
+ json_save_path = os.path.join(subdir,filename)
126
+
127
+ with open(json_save_path, "w") as f:
128
+ json.dump(model_json, f, indent=2)
129
+
130
+ # --- Upload to HF Hub ---
131
+ remote_path = f"msteb_leaderboard/msteb_{result_type}_results/{filename}"
132
+ API.upload_file(
133
+ path_or_fileobj=json_save_path,
134
+ path_in_repo=remote_path,
135
+ repo_id=RESULTS_REPO,
136
+ repo_type="dataset",
137
+ commit_message=f"Upload results for {model_name} ({result_type}) at {current_time}",
138
+ )
139
+ os.remove(json_save_path)
140
+
141
+ print(f"Uploaded to {RESULTS_REPO}/{current_time}")
142
+
143
+ return f"Uploaded to {RESULTS_REPO}/{current_time}"
src/submission_samples/model_name_speech.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Region,LID,TC,RC-QA,ASR,S2TT (xx-en),S2TT (en-xx)
2
+ Africa,,,,,
3
+ Americas/Oceania,,,,,
4
+ Asia (S),,,,,
5
+ Asia (SE),,,,,
6
+ "Asia (W, C)",,,,,
7
+ Asia (E),,,,,
8
+ "Europe (W, N, S)",,,,,
9
+ Europe (E),,,,,
10
+ Average (Micro),,,,,
src/submission_samples/model_name_text.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Region,LID,TC,RC-QA,NLI,MT (xx-en),MT (en-xx)
2
+ Africa,,,,,,
3
+ Americas/Oceania,,,,,,
4
+ Asia (S),,,,,,
5
+ Asia (SE),,,,,,
6
+ "Asia (W, C)",,,,,,
7
+ Asia (E),,,,,,
8
+ "Europe (W, N, S)",,,,,,
9
+ Europe (E),,,,,,
10
+ Average (Micro),,,,,,