File size: 16,452 Bytes
c368720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd60665
c368720
 
 
8fe7b67
c368720
 
bd60665
 
 
c368720
 
 
bd60665
 
 
c368720
 
bc7ef9b
c368720
 
 
 
bd60665
 
c368720
 
bd60665
c368720
 
 
 
 
 
 
 
bd60665
c368720
 
 
 
bd60665
c368720
 
bd60665
c368720
 
 
 
 
 
bd60665
c368720
 
 
 
 
 
 
 
 
 
 
 
 
 
bd60665
c368720
 
 
 
 
bd60665
c368720
 
bd60665
c368720
bd60665
c368720
 
bd60665
c368720
 
 
 
 
bd60665
c368720
 
 
 
bd60665
c368720
 
bd60665
c368720
 
 
 
bd60665
c368720
 
bd60665
c368720
 
 
 
bd60665
c368720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
PromptSuite AI
==============

Deskripsi Proyek:
-----------------
PromptSuite AI adalah platform rekayasa prompt modern untuk membandingkan, menganalisis,
dan memperbaiki prompt secara otomatis ataupun manual, berbasis Large Language Model (LLM) open source.
Platform ini dirancang untuk peneliti, praktisi AI, developer, dan siapapun yang ingin mengeksplorasi
efek optimasi prompt terhadap kualitas output AI.

Fitur:
------
- Perbandingan output prompt original & hasil refine (multi-tab, side-by-side)
- Refinement otomatis maupun manual, dengan berbagai metaprompt canggih
- UI responsif dengan status tombol dinamis & reset otomatis
- Panel JSON untuk output full response (debug/research)
- Dukungan custom CSS & styling profesional
- Bisa dijalankan di lokal, server, maupun cloud

Teknologi:
----------
- Gradio advanced + custom JS + modular backend PromptRefiner
- Fleksibel untuk model apapun (tinggal sesuaikan backend PromptRefiner)
- Siap untuk pengembangan riset atau industri

"""

import gradio as gr
from prompt_refiner import PemurniPrompt
from variables import api_token, models, meta_prompts, explanation_markdown, metaprompt_list, metaprompt_explanations, examples
from custom_css import custom_css
from themes import IndonesiaTheme

class PromptSuiteAI:
    def __init__(self, prompt_refiner: PemurniPrompt, custom_css):
        self.prompt_refiner = prompt_refiner
        default_model = models[-1] if len(models) >= 1 else models[0] if models else None

        with gr.Blocks(theme=IndonesiaTheme(), css=custom_css) as self.interface:
            # --- HEADER & TITLE ---
            with gr.Column(elem_classes=["container", "title-container"]):
                gr.HTML("""
                  <div style='text-align: center;'>
                        <img src='https://i.ibb.co/Gv3WDQrw/banner-propmptsuite.jpg' alt='Banner' style='width: 100%; height: auto;'/>
                    </div>
                """)
                gr.Markdown("# 🚀 PromptSuite AI")
                gr.Markdown("### 🤖 Otomatisasi dan Perbandingan Rekayasa Prompt LLM")
                gr.Markdown("🔍 Bandingkan, evaluasi, dan optimasi prompt AI Anda secara praktis dan canggih.")
                gr.Markdown(
                    """
                    <span style='font-size:1.03em; color:#ccc'>
                    ✨ <b>PromptSuite AI</b> adalah platform rekayasa prompt modern untuk membandingkan, menganalisis, 
                    dan memperbaiki prompt secara otomatis ataupun manual, berbasis Large Language Model (LLM) open source.<br>
                    💡 Platform ini dirancang untuk peneliti, praktisi AI, developer, dan siapapun yang ingin mengeksplorasi 
                    efek optimasi prompt terhadap kualitas output AI.
                    </span>
                    """
                )

            # --- KONTENER 2: Input Prompt & Contoh ---
            with gr.Column(elem_classes=["container", "input-container"]):
                prompt_text = gr.Textbox(label="✏️ Tulis prompt Anda (atau kosongkan untuk melihat metaprompt)", lines=5)
                with gr.Accordion("📋 Contoh Prompt", open=False, visible=True):     
                    gr.Examples(examples=examples, inputs=[prompt_text]) 
                automatic_metaprompt_button = gr.Button(
                    "🔮 Pilih Otomatis Metode Perbaikan",
                    elem_classes=["button-highlight"]
                )
                MetaPrompt_analysis = gr.Markdown()

            # --- KONTENER 3: Pilihan Metaprompt & Penjelasan ---
            with gr.Column(elem_classes=["container", "meta-container"]):
                meta_prompt_choice = gr.Radio(
                    choices=metaprompt_list,
                    label="🛠️ Pilih Metaprompt",
                    value=metaprompt_list[0],
                    elem_classes=["no-background", "radio-group"]
                )
                refine_button = gr.Button(
                    "✨ Perbaiki Prompt",
                    elem_classes=["button-waiting"]
                )
                with gr.Accordion("ℹ️ Penjelasan Metaprompt", open=False, visible=True): 
                    gr.Markdown(explanation_markdown)

            # --- KONTENER 4: Analisis & Refined Prompt ---
            with gr.Column(elem_classes=["container", "analysis-container"]):           
                gr.Markdown(" ")
                prompt_evaluation = gr.Markdown()
                gr.Markdown("### ✨ Prompt yang Telah Diperbaiki")
                refined_prompt = gr.Textbox(
                    label=" ",
                    interactive=True,
                    show_label=True,
                    show_copy_button=True,
                )
                explanation_of_refinements = gr.Markdown()

            # --- KONTENER 5: Pilihan Model & Output Tab ---
            with gr.Column(elem_classes=["container", "model-container"]):
                with gr.Row():
                    apply_model = gr.Dropdown(
                        choices=models,
                        value=default_model,
                        label="🧠 Pilih Model",
                        container=False,
                        scale=1,
                        min_width=300
                    )
                    apply_button = gr.Button(
                        "⚡ Uji Prompt ke Model",
                        elem_classes=["button-waiting"]
                    )
                gr.Markdown("### 📝 Hasil Pada Model Terpilih")
                with gr.Tabs(elem_classes=["tabs"]):
                    with gr.TabItem("📊 Perbandingan Output", elem_classes=["tabitem"]):                     
                        with gr.Row(elem_classes=["output-row"]):
                            with gr.Column(scale=1, elem_classes=["comparison-column"]):
                                gr.Markdown("### 🔡 Output Prompt Asli")
                                original_output1 = gr.Markdown(
                                    elem_classes=["output-content"],
                                    visible=True
                                )
                            with gr.Column(scale=1, elem_classes=["comparison-column"]):
                                gr.Markdown("### ✨ Output Prompt Diperbaiki")
                                refined_output1 = gr.Markdown(
                                    elem_classes=["output-content"],
                                    visible=True
                                )
                    with gr.TabItem("🔡 Output Prompt Asli", elem_classes=["tabitem"]):
                        with gr.Row(elem_classes=["output-row"]):
                            with gr.Column(scale=1, elem_classes=["comparison-column"]):
                                gr.Markdown("### 🔡 Output Prompt Asli")
                                original_output = gr.Markdown(
                                    elem_classes=["output-content"],
                                    visible=True
                                )
                    with gr.TabItem("✨ Output Prompt Diperbaiki", elem_classes=["tabitem"]):
                        with gr.Row(elem_classes=["output-row"]):
                            with gr.Column(scale=1, elem_classes=["comparison-column"]):
                                gr.Markdown("### ✨ Output Prompt Diperbaiki")
                                refined_output = gr.Markdown(
                                    elem_classes=["output-content"],
                                    visible=True
                                )
                with gr.Accordion("🧾 Respons JSON Lengkap", open=False, visible=True):
                    full_response_json = gr.JSON()

            # ======================= EVENT HANDLER / JS ==========================

            def automatic_metaprompt(prompt: str):
                if not prompt.strip():
                    return "Silakan masukkan prompt untuk dianalisis.", None
                metaprompt_analysis, recommended_key = self.prompt_refiner.automatic_metaprompt(prompt)
                return metaprompt_analysis, recommended_key

            def refine_prompt(prompt: str, meta_prompt_choice: str):
                if not prompt.strip():
                    return ("Tidak ada prompt.", "", "", {})
                result = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice)
                return (
                    result[0],  # Evaluasi awal prompt
                    result[1],  # Prompt diperbaiki
                    result[2],  # Penjelasan perbaikan
                    result[3]   # Full JSON response
                )

            def apply_prompts(original_prompt: str, refined_prompt_: str, model: str):
                if not original_prompt or not refined_prompt_:
                    return (
                        "Silakan isi prompt asli dan hasil refine.",
                        "Silakan isi prompt asli dan hasil refine.",
                        "Silakan isi prompt asli dan hasil refine.",
                        "Silakan isi prompt asli dan hasil refine."
                    )
                if not model:
                    return (
                        "Pilih model terlebih dahulu.",
                        "Pilih model terlebih dahulu.",
                        "Pilih model terlebih dahulu.",
                        "Pilih model terlebih dahulu."
                    )
                try:
                    original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
                    refined_output_ = self.prompt_refiner.apply_prompt(refined_prompt_, model)
                except Exception as e:
                    err = f"Terjadi error: {str(e)}"
                    return (err, err, err, err)
                return (
                    str(original_output) if original_output else "Tidak ada output.",
                    str(refined_output_) if refined_output_ else "Tidak ada output.",
                    str(original_output) if original_output else "Tidak ada output.",
                    str(refined_output_) if refined_output_ else "Tidak ada output."
                )

            # --- Event click dan chain JS custom, sama persis dengan kode asli ---
            automatic_metaprompt_button.click(
                fn=automatic_metaprompt,
                inputs=[prompt_text],
                outputs=[MetaPrompt_analysis, meta_prompt_choice]
            ).then(
                fn=lambda: None,
                inputs=None,
                outputs=None,
                js="""
                    () => {
                        document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => {
                            if (el.value !== undefined) {
                                el.value = '';
                            } else {
                                el.textContent = '';
                            }
                        });
                        const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => 
                            btn.textContent.includes('Pilih Otomatis') || 
                            btn.textContent.includes('Perbaiki Prompt') || 
                            btn.textContent.includes('Uji Prompt')
                        );
                        allButtons.forEach(btn => btn.classList.remove('button-highlight'));
                        allButtons[1].classList.add('button-highlight');
                        allButtons[0].classList.add('button-completed');
                        allButtons[2].classList.add('button-waiting');
                    }
                """
            )

            refine_button.click(
                fn=refine_prompt,
                inputs=[prompt_text, meta_prompt_choice],
                outputs=[prompt_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
            ).then(
                fn=lambda: None,
                inputs=None,
                outputs=None,
                js="""
                    () => {
                        document.querySelectorAll('.model-container .markdown-text, .comparison-output').forEach(el => {
                            if (el.value !== undefined) {
                                el.value = '';
                            } else {
                                el.textContent = '';
                            }
                        });
                        const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => 
                            btn.textContent.includes('Pilih Otomatis') || 
                            btn.textContent.includes('Perbaiki Prompt') || 
                            btn.textContent.includes('Uji Prompt')
                        );
                        allButtons.forEach(btn => btn.classList.remove('button-highlight'));
                        allButtons[2].classList.add('button-highlight');
                        allButtons[1].classList.add('button-completed');
                        allButtons[2].classList.remove('button-waiting');
                    }
                """
            )

            apply_button.click(
                fn=apply_prompts,
                inputs=[prompt_text, refined_prompt, apply_model],
                outputs=[original_output, refined_output, original_output1, refined_output1],
                show_progress=True
            ).then(
                fn=lambda: None,
                inputs=None,
                outputs=None,
                js="""
                    () => {
                        const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => 
                            btn.textContent.includes('Pilih Otomatis') || 
                            btn.textContent.includes('Perbaiki Prompt') || 
                            btn.textContent.includes('Uji Prompt')
                        );
                        allButtons.forEach(btn => btn.classList.remove('button-highlight', 'button-waiting'));
                        allButtons[2].classList.add('button-completed');
                        document.querySelectorAll('.comparison-output').forEach(el => {
                            if (el.parentElement) {
                                el.parentElement.style.display = 'none';
                                setTimeout(() => {
                                    el.parentElement.style.display = 'block';
                                }, 100);
                            }
                        });
                    }
                """
            )

            prompt_text.change(
                fn=lambda: None,
                inputs=None,
                outputs=None,
                js="""
                    () => {
                        document.querySelectorAll('.analysis-container textarea, .analysis-container .markdown-text, .model-container .markdown-text, .comparison-output').forEach(el => {
                            if (el.value !== undefined) {
                                el.value = '';
                            } else {
                                el.textContent = '';
                            }
                        });
                        const allButtons = Array.from(document.querySelectorAll('button')).filter(btn => 
                            btn.textContent.includes('Pilih Otomatis') || 
                            btn.textContent.includes('Perbaiki Prompt') || 
                            btn.textContent.includes('Uji Prompt')
                        );
                        allButtons.forEach(btn => {
                            btn.classList.remove('button-completed', 'button-highlight', 'button-waiting');
                        });
                        allButtons[0].classList.add('button-highlight');
                        allButtons.slice(1).forEach(btn => btn.classList.add('button-waiting'));
                    }
                """
            )

    def launch(self, share=False):
        """Jalankan antarmuka PromptSuite AI"""
        self.interface.launch(share=share)

if __name__ == '__main__':
    prompt_refiner = PemurniPrompt(api_token, meta_prompts, metaprompt_explanations)
    app = PromptSuiteAI(prompt_refiner, custom_css)
    app.launch(share=False)




# Author: __drat (c)2025