Commit
·
1ca3adb
1
Parent(s):
cb4e009
fix stability
Browse files- app.py +113 -8
- packages.txt +1 -0
- requirements.txt +2 -1
- tts/frontend_function.py +20 -1
app.py
CHANGED
|
@@ -4,6 +4,11 @@ import os
|
|
| 4 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 5 |
import gradio as gr
|
| 6 |
import traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
| 9 |
|
|
@@ -33,6 +38,21 @@ print("Initializing MegaTTS3 model...")
|
|
| 33 |
infer_pipe = MegaTTS3DiTInfer()
|
| 34 |
print("Model loaded successfully!")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
@spaces.GPU
|
| 37 |
def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
| 38 |
if not inp_audio or not inp_text:
|
|
@@ -42,25 +62,110 @@ def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
|
| 42 |
try:
|
| 43 |
print(f"Generating speech with: {inp_text}...")
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# Read audio file
|
| 51 |
with open(wav_path, 'rb') as file:
|
| 52 |
file_content = file.read()
|
| 53 |
|
| 54 |
-
# Generate speech
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
return wav_bytes
|
| 59 |
except Exception as e:
|
| 60 |
traceback.print_exc()
|
| 61 |
gr.Warning(f"Speech generation failed: {str(e)}")
|
|
|
|
|
|
|
| 62 |
return None
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
|
| 66 |
gr.Markdown("# MegaTTS 3 Voice Cloning")
|
|
|
|
| 4 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 5 |
import gradio as gr
|
| 6 |
import traceback
|
| 7 |
+
import gc
|
| 8 |
+
import numpy as np
|
| 9 |
+
import librosa
|
| 10 |
+
from pydub import AudioSegment
|
| 11 |
+
from pydub.effects import normalize
|
| 12 |
from huggingface_hub import snapshot_download
|
| 13 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
| 14 |
|
|
|
|
| 38 |
infer_pipe = MegaTTS3DiTInfer()
|
| 39 |
print("Model loaded successfully!")
|
| 40 |
|
| 41 |
+
def reset_model():
|
| 42 |
+
"""Reset the inference pipeline to recover from CUDA errors."""
|
| 43 |
+
global infer_pipe
|
| 44 |
+
try:
|
| 45 |
+
if torch.cuda.is_available():
|
| 46 |
+
torch.cuda.empty_cache()
|
| 47 |
+
torch.cuda.synchronize()
|
| 48 |
+
print("Reinitializing MegaTTS3 model...")
|
| 49 |
+
infer_pipe = MegaTTS3DiTInfer()
|
| 50 |
+
print("Model reinitialized successfully!")
|
| 51 |
+
return True
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Failed to reinitialize model: {e}")
|
| 54 |
+
return False
|
| 55 |
+
|
| 56 |
@spaces.GPU
|
| 57 |
def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
| 58 |
if not inp_audio or not inp_text:
|
|
|
|
| 62 |
try:
|
| 63 |
print(f"Generating speech with: {inp_text}...")
|
| 64 |
|
| 65 |
+
# Check CUDA availability and clear cache
|
| 66 |
+
if torch.cuda.is_available():
|
| 67 |
+
torch.cuda.empty_cache()
|
| 68 |
+
print(f"CUDA device: {torch.cuda.get_device_name()}")
|
| 69 |
+
else:
|
| 70 |
+
gr.Warning("CUDA is not available. Please check your GPU setup.")
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
# Robustly preprocess audio
|
| 74 |
+
try:
|
| 75 |
+
processed_audio_path = preprocess_audio_robust(inp_audio)
|
| 76 |
+
# Use existing cut_wav for final trimming
|
| 77 |
+
cut_wav(processed_audio_path, max_len=28)
|
| 78 |
+
wav_path = processed_audio_path
|
| 79 |
+
except Exception as audio_error:
|
| 80 |
+
gr.Warning(f"Audio preprocessing failed: {str(audio_error)}")
|
| 81 |
+
return None
|
| 82 |
|
| 83 |
# Read audio file
|
| 84 |
with open(wav_path, 'rb') as file:
|
| 85 |
file_content = file.read()
|
| 86 |
|
| 87 |
+
# Generate speech with proper error handling
|
| 88 |
+
try:
|
| 89 |
+
resource_context = infer_pipe.preprocess(file_content)
|
| 90 |
+
wav_bytes = infer_pipe.forward(resource_context, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
|
| 91 |
+
# Clean up memory after successful generation
|
| 92 |
+
cleanup_memory()
|
| 93 |
+
return wav_bytes
|
| 94 |
+
except RuntimeError as cuda_error:
|
| 95 |
+
if "CUDA" in str(cuda_error):
|
| 96 |
+
print(f"CUDA error detected: {cuda_error}")
|
| 97 |
+
# Try to reset the model to recover from CUDA errors
|
| 98 |
+
if reset_model():
|
| 99 |
+
gr.Warning("CUDA error occurred. Model has been reset. Please try again.")
|
| 100 |
+
else:
|
| 101 |
+
gr.Warning("CUDA error occurred and model reset failed. Please restart the application.")
|
| 102 |
+
return None
|
| 103 |
+
else:
|
| 104 |
+
raise cuda_error
|
| 105 |
|
|
|
|
| 106 |
except Exception as e:
|
| 107 |
traceback.print_exc()
|
| 108 |
gr.Warning(f"Speech generation failed: {str(e)}")
|
| 109 |
+
# Clean up CUDA memory on any error
|
| 110 |
+
cleanup_memory()
|
| 111 |
return None
|
| 112 |
|
| 113 |
+
def cleanup_memory():
|
| 114 |
+
"""Clean up GPU and system memory."""
|
| 115 |
+
gc.collect()
|
| 116 |
+
if torch.cuda.is_available():
|
| 117 |
+
torch.cuda.empty_cache()
|
| 118 |
+
torch.cuda.synchronize()
|
| 119 |
+
|
| 120 |
+
def preprocess_audio_robust(audio_path, target_sr=22050, max_duration=30):
|
| 121 |
+
"""Robustly preprocess audio to prevent CUDA errors."""
|
| 122 |
+
try:
|
| 123 |
+
# Load with pydub for robust format handling
|
| 124 |
+
audio = AudioSegment.from_file(audio_path)
|
| 125 |
+
|
| 126 |
+
# Convert to mono if stereo
|
| 127 |
+
if audio.channels > 1:
|
| 128 |
+
audio = audio.set_channels(1)
|
| 129 |
+
|
| 130 |
+
# Limit duration to prevent memory issues
|
| 131 |
+
if len(audio) > max_duration * 1000: # pydub uses milliseconds
|
| 132 |
+
audio = audio[:max_duration * 1000]
|
| 133 |
+
|
| 134 |
+
# Normalize audio to prevent clipping
|
| 135 |
+
audio = normalize(audio)
|
| 136 |
+
|
| 137 |
+
# Convert to target sample rate
|
| 138 |
+
audio = audio.set_frame_rate(target_sr)
|
| 139 |
+
|
| 140 |
+
# Export to temporary WAV file with specific parameters
|
| 141 |
+
temp_path = audio_path.replace(os.path.splitext(audio_path)[1], '_processed.wav')
|
| 142 |
+
audio.export(
|
| 143 |
+
temp_path,
|
| 144 |
+
format="wav",
|
| 145 |
+
parameters=["-acodec", "pcm_s16le", "-ac", "1", "-ar", str(target_sr)]
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Validate the audio with librosa
|
| 149 |
+
wav, sr = librosa.load(temp_path, sr=target_sr, mono=True)
|
| 150 |
+
|
| 151 |
+
# Check for invalid values
|
| 152 |
+
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
| 153 |
+
raise ValueError("Audio contains NaN or infinite values")
|
| 154 |
+
|
| 155 |
+
# Ensure reasonable amplitude range
|
| 156 |
+
if np.max(np.abs(wav)) < 1e-6:
|
| 157 |
+
raise ValueError("Audio signal is too quiet")
|
| 158 |
+
|
| 159 |
+
# Re-save the validated audio
|
| 160 |
+
import soundfile as sf
|
| 161 |
+
sf.write(temp_path, wav, sr)
|
| 162 |
+
|
| 163 |
+
return temp_path
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(f"Audio preprocessing failed: {e}")
|
| 167 |
+
raise ValueError(f"Failed to process audio: {str(e)}")
|
| 168 |
+
|
| 169 |
|
| 170 |
with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
|
| 171 |
gr.Markdown("# MegaTTS 3 Voice Cloning")
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
CHANGED
|
@@ -16,4 +16,5 @@ torchdiffeq==0.2.5
|
|
| 16 |
openai-whisper==20240930
|
| 17 |
httpx==0.28.1
|
| 18 |
gradio==5.23.1
|
| 19 |
-
hf-transfer
|
|
|
|
|
|
| 16 |
openai-whisper==20240930
|
| 17 |
httpx==0.28.1
|
| 18 |
gradio==5.23.1
|
| 19 |
+
hf-transfer
|
| 20 |
+
soundfile
|
tts/frontend_function.py
CHANGED
|
@@ -16,6 +16,7 @@ import torch
|
|
| 16 |
import torch.nn.functional as F
|
| 17 |
import whisper
|
| 18 |
import librosa
|
|
|
|
| 19 |
from copy import deepcopy
|
| 20 |
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
|
| 21 |
from tts.utils.audio_utils.align import mel2token_to_dur
|
|
@@ -39,8 +40,26 @@ def g2p(self, text_inp):
|
|
| 39 |
''' Get phoneme2mel align of prompt speech '''
|
| 40 |
def align(self, wav):
|
| 41 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
prompt_max_frame = mel.size(2) // self.fm * self.fm
|
| 45 |
mel = mel[:, :, :prompt_max_frame]
|
| 46 |
token = torch.LongTensor([[798]]).to(self.device)
|
|
|
|
| 16 |
import torch.nn.functional as F
|
| 17 |
import whisper
|
| 18 |
import librosa
|
| 19 |
+
import numpy as np
|
| 20 |
from copy import deepcopy
|
| 21 |
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
|
| 22 |
from tts.utils.audio_utils.align import mel2token_to_dur
|
|
|
|
| 40 |
''' Get phoneme2mel align of prompt speech '''
|
| 41 |
def align(self, wav):
|
| 42 |
with torch.inference_mode():
|
| 43 |
+
# Validate input audio
|
| 44 |
+
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
| 45 |
+
raise ValueError("Input audio contains NaN or infinite values")
|
| 46 |
+
|
| 47 |
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
|
| 48 |
+
|
| 49 |
+
# Validate resampled audio
|
| 50 |
+
if np.any(np.isnan(whisper_wav)) or np.any(np.isinf(whisper_wav)):
|
| 51 |
+
raise ValueError("Resampled audio contains NaN or infinite values")
|
| 52 |
+
|
| 53 |
+
# Get mel spectrogram with validation
|
| 54 |
+
mel_spec = whisper.log_mel_spectrogram(whisper_wav)
|
| 55 |
+
if np.any(np.isnan(mel_spec)) or np.any(np.isinf(mel_spec)):
|
| 56 |
+
raise ValueError("Mel spectrogram contains NaN or infinite values")
|
| 57 |
+
|
| 58 |
+
mel = torch.FloatTensor(mel_spec.T).to(self.device)[None].transpose(1,2)
|
| 59 |
+
|
| 60 |
+
# Validate tensor before further processing
|
| 61 |
+
if torch.any(torch.isnan(mel)) or torch.any(torch.isinf(mel)):
|
| 62 |
+
raise ValueError("Mel tensor contains NaN or infinite values")
|
| 63 |
prompt_max_frame = mel.size(2) // self.fm * self.fm
|
| 64 |
mel = mel[:, :, :prompt_max_frame]
|
| 65 |
token = torch.LongTensor([[798]]).to(self.device)
|