DenisT commited on
Commit
7291333
·
1 Parent(s): 5f77eb2
.gitignore ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ Pipfile
163
+ Pipfile.lock
Dockerfile ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.11
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ RUN useradd -m -u 1000 user
12
+
13
+ USER user
14
+
15
+ ENV HOME=/home/user \
16
+ PATH=/home/user/.local/bin:$PATH
17
+
18
+ WORKDIR $HOME/app
19
+
20
+ COPY --chown=user . $HOME/app
21
+
22
+ CMD ["uvicorn", "server.app:app", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -1,10 +1,26 @@
1
  ---
2
- title: Hiragana Handwriting App
3
- emoji: 📈
4
- colorFrom: purple
5
- colorTo: purple
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: hiragana-handwriting-app
3
+ emoji: 🏯
4
+ colorFrom: blue
5
+ colorTo: black
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
11
+
12
+ # Handwriting Hiragana Quiz
13
+
14
+ ## Description
15
+
16
+ This web application consists of a type of quiz where the user can pick a hiragana character and write it on the screen. The application will then check if the character is correct or not.
17
+
18
+ The code was originally placed on GitHub [here](https://github.com/Detopall/handwriting-hiragana). This Hugging Face Spaces repository was created to host the application on Hugging Face Spaces.
19
+
20
+ ## Data
21
+
22
+ The data used for this project is a dataset of hiragana characters. This dataset can be found [here](https://github.com/rois-codh/kmnist). The dataset contains 48 different hiragana characters (with one extra character that is not used in production).
23
+
24
+ ## Usage
25
+
26
+ To use the application you will need to select a hiragana character from one of the boxes, then you will need to write the character on the screen. After you finish writing the character, the application will check if the character is correct or not.
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ from PIL import Image
3
+ import numpy as np
4
+ from fastapi import FastAPI
5
+ from fastapi.staticfiles import StaticFiles
6
+ from fastapi.responses import FileResponse
7
+ import io
8
+ import base64
9
+ import uvicorn
10
+ from fastapi.middleware.cors import CORSMiddleware
11
+ import pydantic
12
+
13
+ app = FastAPI()
14
+
15
+ # Add CORS middleware
16
+ app.add_middleware(
17
+ CORSMiddleware,
18
+ allow_origins=["*"],
19
+ allow_methods=["*"],
20
+ allow_headers=["*"]
21
+ )
22
+
23
+ app.mount("/static", StaticFiles(directory="static"), name="static")
24
+
25
+ @app.get("/")
26
+ def read_root():
27
+ return FileResponse("static/index.html")
28
+
29
+ # Load the model
30
+ model = tf.keras.models.load_model('model/k49_model.h5')
31
+
32
+ class ImageRequest(pydantic.BaseModel):
33
+ image: str
34
+ label: int
35
+
36
+ @app.post("/api/predict")
37
+ def predict(request: dict):
38
+ image = request["image"]
39
+ label = request["label"]
40
+
41
+ # Decode base64-encoded image
42
+ image_bytes = base64.b64decode(image["image"].split(",")[1])
43
+
44
+ # Convert image to preprocessed numpy array and save image to server
45
+ X = preprocess(image_bytes)
46
+ image = Image.fromarray(X[0].reshape(28, 28) * 255).convert("RGB")
47
+
48
+ image.save("image.png")
49
+
50
+ # Make prediction using the model
51
+ prediction = model.predict(X)
52
+ # Convert prediction to integer
53
+ prediction = int(np.argmax(prediction))
54
+
55
+ print("label: ", label)
56
+ print("prediction: ", prediction)
57
+
58
+ return {'prediction': prediction == int(label)}
59
+
60
+
61
+ def preprocess(image_bytes):
62
+ # Decode base64-encoded image and convert to PIL Image object
63
+ img = Image.open(io.BytesIO(image_bytes))
64
+ # Convert transparent background to white
65
+ if img.mode == 'RGBA':
66
+ img.load()
67
+ background = Image.new('RGB', img.size, (255, 255, 255))
68
+ background.paste(img, mask=img.split()[3])
69
+ img = background
70
+ # Convert to grayscale
71
+ img = img.convert('L')
72
+ # Invert colors to black background with white numbers
73
+ img = np.invert(np.array(img))
74
+ # Resize image to 28x28 pixels
75
+ img = Image.fromarray(img).resize((28, 28))
76
+ # Convert image to numpy array and normalize pixel values
77
+ X = np.array(img).reshape(1, 28, 28, 1) / 255
78
+ return X
79
+
80
+ if __name__ == '__main__':
81
+ uvicorn.run('app:app', host='localhost', port=8000, reload=True)
data/k49-test-imgs.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de2476bb29ed1a12a2424e6724349f7519f6f39d112848aea6aa9c21eeaf594
3
+ size 10971201
data/k49-test-labels.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:299be30ea32c2cc69318f5a5a579ffbffb0a6a1ccff134fb0ca834cd525ad6af
3
+ size 27450
data/k49-train-imgs.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c42adc463ed8efe598cf002f6ecafbca6d8c38f0551f7a35e0b23755fca1c8d
3
+ size 66117696
data/k49-train-labels.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbfef4750ce9aa70b6072f0bca7daa9e80e2d79b379d5ae923265a63396260e4
3
+ size 164485
data/k49_classmap.csv ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ index,codepoint,char
2
+ 0,U+3042,あ
3
+ 1,U+3044,い
4
+ 2,U+3046,う
5
+ 3,U+3048,え
6
+ 4,U+304A,お
7
+ 5,U+304B,か
8
+ 6,U+304D,き
9
+ 7,U+304F,く
10
+ 8,U+3051,け
11
+ 9,U+3053,こ
12
+ 10,U+3055,さ
13
+ 11,U+3057,し
14
+ 12,U+3059,す
15
+ 13,U+305B,せ
16
+ 14,U+305D,そ
17
+ 15,U+305F,た
18
+ 16,U+3061,ち
19
+ 17,U+3064,つ
20
+ 18,U+3066,て
21
+ 19,U+3068,と
22
+ 20,U+306A,な
23
+ 21,U+306B,に
24
+ 22,U+306C,ぬ
25
+ 23,U+306D,ね
26
+ 24,U+306E,の
27
+ 25,U+306F,は
28
+ 26,U+3072,ひ
29
+ 27,U+3075,ふ
30
+ 28,U+3078,へ
31
+ 29,U+307B,ほ
32
+ 30,U+307E,ま
33
+ 31,U+307F,み
34
+ 32,U+3080,む
35
+ 33,U+3081,め
36
+ 34,U+3082,も
37
+ 35,U+3084,や
38
+ 36,U+3086,ゆ
39
+ 37,U+3088,よ
40
+ 38,U+3089,ら
41
+ 39,U+308A,り
42
+ 40,U+308B,る
43
+ 41,U+308C,れ
44
+ 42,U+308D,ろ
45
+ 43,U+308F,わ
46
+ 44,U+3090,ゐ
47
+ 45,U+3091,ゑ
48
+ 46,U+3092,を
49
+ 47,U+3093,ん
50
+ 48,U+309D,ゝ
image.png ADDED
main.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
model/k49_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa72f71c814c845a8324d25977e78a99a6d745a1bec3336c9e07ed0e2d18baf7
3
+ size 5779560
static/hiragana-characters.png ADDED
static/hiragana.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "A": 0,
3
+ "I": 1,
4
+ "U": 2,
5
+ "E": 3,
6
+ "O": 4,
7
+ "KA": 5,
8
+ "KI": 6,
9
+ "KU": 7,
10
+ "KE": 8,
11
+ "KO": 9,
12
+ "SA": 10,
13
+ "SHI": 11,
14
+ "SU": 12,
15
+ "SE": 13,
16
+ "SO": 14,
17
+ "TA": 15,
18
+ "CHI": 16,
19
+ "TSU": 17,
20
+ "TE": 18,
21
+ "TO": 19,
22
+ "NA": 20,
23
+ "NI": 21,
24
+ "NU": 22,
25
+ "NE": 23,
26
+ "NO": 24,
27
+ "HA": 25,
28
+ "HI": 26,
29
+ "FU": 27,
30
+ "HE": 28,
31
+ "HO": 29,
32
+ "MA": 30,
33
+ "MI": 31,
34
+ "MU": 32,
35
+ "ME": 33,
36
+ "MO": 34,
37
+ "YA": 35,
38
+ "YU": 36,
39
+ "YO": 37,
40
+ "RA": 38,
41
+ "RI": 39,
42
+ "RU": 40,
43
+ "RE": 41,
44
+ "RO": 42,
45
+ "WA": 43,
46
+ "WI": 44,
47
+ "WE": 45,
48
+ "WO": 46,
49
+ "N": 47
50
+ }
static/index.html ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
6
+ <link rel="stylesheet" href="/static/styles.css" />
7
+ <script src="/static/script.js" defer></script>
8
+ <title>Hiragana Prediction</title>
9
+ </head>
10
+ <body>
11
+ <h1>Hiragana Prediction</h1>
12
+ <a href="https://github.com/Detopall/handwriting-hiragana">GitHub</a>
13
+ <button id="showModalBtn" class="btn">Show Cheat Sheet</button>
14
+ <dialog id="modal">
15
+ <img src="/static/hiragana-characters.png" alt="Cheat Sheet" />
16
+ <button id="closeModalBtn" class="btn">Close</button>
17
+ </dialog>
18
+ <div id="hiraganaBoxes"></div>
19
+ <canvas id="canvas" width="350" height="350"></canvas>
20
+ <button id="clearCanvasBtn" class="btn">Clear Canvas</button>
21
+ <button id="checkPredictionBtn" class="btn">Check Prediction</button>
22
+ <button id="clearSavesBtn" class="btn">Clear Saves</button>
23
+ <p id="predictionResult"></p>
24
+ </body>
25
+ </html>
static/script.js ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ "use strict";
2
+
3
+ const checkPredictionBtn = document.getElementById("checkPredictionBtn");
4
+ checkPredictionBtn.addEventListener("click", checkPrediction);
5
+ const clearCanvasBtn = document.getElementById("clearCanvasBtn");
6
+ clearCanvasBtn.addEventListener("click", clearCanvas);
7
+ const showModalBtn = document.getElementById("showModalBtn");
8
+ const modal = document.getElementById("modal");
9
+ const closeModalBtn = document.getElementById("closeModalBtn");
10
+ const clearSavesBtn = document.getElementById("clearSavesBtn");
11
+ clearSavesBtn.addEventListener("click", () => {
12
+ localStorage.removeItem("predictions");
13
+ loadPredictions();
14
+ // clear the colors of the boxes
15
+ const hiraganaBoxes = document.querySelectorAll(".hiraganaBox");
16
+ hiraganaBoxes.forEach(box => {
17
+ box.style.backgroundColor = "";
18
+ });
19
+ });
20
+
21
+ showModalBtn.addEventListener("click", () => modal.showModal());
22
+ closeModalBtn.addEventListener("click", () => modal.close());
23
+
24
+ loadHiraganaData();
25
+
26
+ // load hiragana data from json file
27
+ async function loadHiraganaData() {
28
+ let hiraganaData = {};
29
+ await fetch("/static/hiragana.json")
30
+ .then((response) => response.json())
31
+ .then((data) => {
32
+ hiraganaData = data;
33
+ const hiraganaBoxes = document.getElementById("hiraganaBoxes");
34
+ for (const letter in hiraganaData) {
35
+ const box = document.createElement("div");
36
+ box.classList.add("hiraganaBox");
37
+ box.textContent = letter;
38
+ box.dataset.label = hiraganaData[letter];
39
+ hiraganaBoxes.appendChild(box);
40
+ }
41
+ })
42
+ .catch((error) => {
43
+ console.error("Hiragana data request error:", error);
44
+ });
45
+
46
+ loadPredictions();
47
+ }
48
+
49
+
50
+
51
+ async function sendPrediction(label, image) {
52
+
53
+ try {
54
+ const response = await fetch("/api/predict", {
55
+ method: "POST",
56
+ headers: { "Content-Type": "application/json" },
57
+ body: JSON.stringify({
58
+ image: { image: image },
59
+ label: label,
60
+ }),
61
+ });
62
+ const data = await response.json();
63
+ handlePrediction(label, data.prediction);
64
+ savePrediction(label, data.prediction);
65
+ } catch (error) {
66
+ console.error("Prediction request error:", error);
67
+ }
68
+
69
+ loadPredictions();
70
+ }
71
+
72
+
73
+ function handlePrediction(label, prediction) {
74
+ const predictionResultElement = document.getElementById("predictionResult");
75
+ const selectedBox = document.querySelector(`.hiraganaBox[data-label="${label}"]`);
76
+ if (prediction) {
77
+ predictionResultElement.textContent = "Correct prediction!";
78
+ selectedBox.style.backgroundColor = "green";
79
+ } else {
80
+ predictionResultElement.textContent = "Incorrect prediction!";
81
+ selectedBox.style.backgroundColor = "red";
82
+ }
83
+ }
84
+
85
+ const canvas = document.getElementById("canvas");
86
+ if (canvas) {
87
+ canvas.addEventListener("mousedown", function (e) {
88
+ startDrawing(e);
89
+ });
90
+ }
91
+
92
+ function startDrawing(e) {
93
+ canvas.addEventListener("mousemove", handleDrawing);
94
+ canvas.addEventListener("mouseup", function () {
95
+ stopDrawing();
96
+ });
97
+ }
98
+
99
+ function stopDrawing() {
100
+ canvas.removeEventListener("mousemove", handleDrawing);
101
+ }
102
+
103
+ function handleDrawing(e) {
104
+ const ctx = canvas.getContext("2d");
105
+ ctx.lineWidth = 25;
106
+ ctx.lineCap = "round"
107
+ ctx.lineJoin = "round"
108
+ ctx.strokeStyle = "#000"
109
+ const rect = canvas.getBoundingClientRect();
110
+ const x = e.clientX - rect.left;
111
+ const y = e.clientY - rect.top;
112
+
113
+ ctx.fillStyle = "#000";
114
+ ctx.beginPath();
115
+ ctx.arc(x, y, 5, 0, Math.PI * 2);
116
+ ctx.fill();
117
+ }
118
+
119
+ function clearCanvas() {
120
+ const ctx = canvas.getContext("2d");
121
+ ctx.clearRect(0, 0, canvas.width, canvas.height);
122
+ }
123
+
124
+ function checkPrediction() {
125
+ const canvas = document.getElementById("canvas");
126
+ if (!canvas) return;
127
+ const image = canvas.toDataURL("image/png");
128
+ const selectedCharacter = document.querySelector(".hiraganaBox.selected").dataset.label;
129
+
130
+ sendPrediction(selectedCharacter, image);
131
+ }
132
+
133
+ // Event delegation for selecting hiragana boxes
134
+ document.addEventListener("click", (e) => {
135
+ const hiraganaBoxes = document.querySelectorAll(".hiraganaBox");
136
+ hiraganaBoxes.forEach(box => {
137
+ box.classList.remove("selected");
138
+ });
139
+ if (e.target.classList.contains("hiraganaBox")) {
140
+ e.target.classList.add("selected");
141
+ }
142
+ });
143
+
144
+ function savePrediction(label, prediction) {
145
+ const predictions = JSON.parse(localStorage.getItem("predictions")) || [];
146
+ // remove the old prediction if it exists
147
+ const updatedPredictions = predictions.filter(p => p.label !== label);
148
+ updatedPredictions.push({ label, prediction });
149
+ localStorage.setItem("predictions", JSON.stringify(updatedPredictions));
150
+ }
151
+
152
+ function loadPredictions() {
153
+ const predictions = JSON.parse(localStorage.getItem("predictions")) || [];
154
+ // color the boxes based on the predictions
155
+ const hiraganaBoxes = document.querySelectorAll(".hiraganaBox");
156
+ hiraganaBoxes.forEach(box => {
157
+ const prediction = predictions.find(p => p.label === box.dataset.label);
158
+ if (prediction) {
159
+ if (prediction.prediction) {
160
+ box.style.backgroundColor = "green";
161
+ } else {
162
+ box.style.backgroundColor = "red";
163
+ }
164
+ }
165
+ });
166
+ }
static/styles.css ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ body {
2
+ font-family: Arial, sans-serif;
3
+ display: flex;
4
+ justify-content: center;
5
+ align-items: center;
6
+ flex-direction: column;
7
+ }
8
+
9
+ h1 {
10
+ margin-bottom: 20px;
11
+ }
12
+
13
+ a {
14
+ color: #007bff;
15
+ }
16
+
17
+ #hiraganaBoxes {
18
+ display: grid;
19
+ grid-template-columns: repeat(10, 1fr);
20
+ grid-gap: 10px;
21
+ margin: 20px 0;
22
+ }
23
+
24
+ .hiraganaBox {
25
+ border: 1px solid #333;
26
+ padding: 10px;
27
+ margin: 0 10px;
28
+ cursor: pointer;
29
+ border-radius: 0.5rem;
30
+ font-weight: bold;
31
+ width: 2rem;
32
+ text-align: center;
33
+ }
34
+
35
+ .hiraganaBox:hover {
36
+ background-color: lightblue;
37
+ }
38
+
39
+ .hiraganaBox.selected {
40
+ background-color: rgb(106, 96, 250);
41
+ }
42
+
43
+ #canvas {
44
+ border: 1px solid #333;
45
+ display: block;
46
+ margin: 0 auto 20px;
47
+ border-radius: 0.5rem;
48
+ }
49
+
50
+ .btn {
51
+ background-color: #007bff;
52
+ border: none;
53
+ color: #fff;
54
+ padding: 10px 20px;
55
+ font-size: 16px;
56
+ cursor: pointer;
57
+ margin: 0.5rem 0;
58
+ border-radius: 5px;
59
+ }
60
+
61
+ .btn:hover {
62
+ background-color: #0056b3;
63
+ }
64
+
65
+ #predictionResult {
66
+ margin-top: 20px;
67
+ font-size: 18px;
68
+ }
69
+
70
+ dialog {
71
+ position: fixed;
72
+ top: 50%;
73
+ left: 50%;
74
+ transform: translate(-50%, -50%);
75
+ background-color: white;
76
+ border: 1px solid #333;
77
+ padding: 20px;
78
+ }
79
+
80
+ dialog img {
81
+ max-width: 100%;
82
+ height: auto;
83
+ }
84
+
85
+ dialog button {
86
+ margin-top: 10px;
87
+ }