Spaces:
Running
Running
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
from main import predict | |
def process_image(image): | |
if image is not None: | |
if not isinstance(image, np.ndarray): | |
image = np.array(Image.open(image)) | |
print(image) | |
translated_image = predict(image) | |
return translated_image | |
return None | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<div style="display: flex; align-items: center; flex-direction: row; justify-content: center; margin-bottom: 20px; text-align: center;"> | |
<a href="https://github.com/Detopall/manga-translator" target="_blank" rel="noopener noreferrer" style="text-decoration: none;"> | |
<h1 style="display: inline; margin-left: 10px; text-decoration: underline;">Manga Translator</h1> | |
</a> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image() | |
submit_button = gr.Button("Translate") | |
with gr.Column(scale=1): | |
image_output = gr.Image() | |
submit_button.click(process_image, inputs=image_input, outputs=image_output) | |
examples = gr.Examples(examples=[ | |
["./examples/ex1.jpg"], | |
["./examples/ex2.jpg"], | |
["./examples/ex3.jpg"], | |
["./examples/ex4.jpg"], | |
], inputs=image_input) | |
if __name__ == "__main__": | |
demo.launch() | |