Spaces:
Running
Running
import io | |
import base64 | |
import numpy as np | |
from PIL import Image | |
from ultralytics import YOLO | |
from utils.predict_bounding_boxes import predict_bounding_boxes | |
from utils.manga_ocr_utils import get_text_from_image | |
from utils.translate_manga import translate_manga | |
from utils.process_contour import process_contour | |
from utils.write_text_on_image import add_text | |
MODEL_PATH = "./model_creation/runs/detect/train5/weights/best.pt" | |
object_detection_model = YOLO(MODEL_PATH) | |
def extract_text_from_regions(image: np.ndarray, results: list): | |
for result in results: | |
x1, y1, x2, y2, _, _ = result | |
detected_image = image[int(y1):int(y2), int(x1):int(x2)] | |
if detected_image.shape[-1] == 4: | |
detected_image = detected_image[:, :, :3] | |
im = Image.fromarray(np.uint8(detected_image * 255)) | |
text = get_text_from_image(im) | |
processed_image, cont = process_contour(detected_image) | |
translated_text = translate_manga(text, source_lang="auto", target_lang="en") | |
add_text(processed_image, translated_text, cont) | |
def convert_image_to_base64(image: Image.Image) -> str: | |
buff = io.BytesIO() | |
image.save(buff, format="PNG") | |
return base64.b64encode(buff.getvalue()).decode("utf-8") | |
def predict(image: np.ndarray): | |
image = Image.fromarray(image) | |
image.save("image.png") | |
try: | |
np_image = np.array(image) | |
results = predict_bounding_boxes(object_detection_model, "image.png") | |
extract_text_from_regions(np_image, results) | |
return np_image | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return None | |