Spaces:
Sleeping
Sleeping
#import gradio as gr | |
import tempfile | |
from pydub import AudioSegment | |
from transformers import pipeline | |
from pyannote.audio import Pipeline | |
import gradio as gr | |
import gradio as gr | |
from transformers import pipeline | |
import whisper | |
from pyannote.audio import Pipeline | |
import tempfile | |
import os | |
def load_models(model_size): | |
if model_size == "transcriber": | |
model_name = "clinifyemr/yoruba-model-finetuned" | |
transcriber = pipeline("automatic-speech-recognition", model=model_name) | |
return transcriber, None | |
else: | |
model = whisper.load_model(model_size) | |
return None, model | |
from flask import jsonify | |
import tempfile | |
import os | |
import io | |
def process_audio(audio_file, num_speakers, model_size): | |
transcriber, whisper_model = load_models(model_size) | |
# Ensure audio file is provided | |
if audio_file is None: | |
return jsonify({"error": "Audio file is required"}), 400 | |
try: | |
audio_file.seek(0) # Reset the file pointer | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
tmp.write(audio_file.read()) | |
tmp_path = tmp.name | |
# Initialize transcription_text | |
transcription_text = None | |
if transcriber: | |
result = transcriber(tmp_path) | |
transcription_text = result['text'] | |
elif whisper_model: | |
result = whisper_model.transcribe(tmp_path) | |
transcription_text = result['text'] | |
if transcription_text is None: | |
raise ValueError("No transcription results") | |
# Diarization process | |
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN) | |
diarization = diarization_pipeline(tmp_path, min_speakers=num_speakers, max_speakers=5) | |
os.remove(tmp_path) # Cleanup the temporary file | |
return jsonify({ | |
"transcription": transcription_text, | |
"diarization": diarization.get_timeline().json() | |
}) | |
except Exception as e: | |
os.remove(tmp_path) # Ensure to cleanup on error | |
return jsonify({"error": f"Error processing audio file: {e}"}), 500 | |
def gradio_interface(audio_file, num_speakers, model_size): | |
transcription, diarization = process_audio(audio_file, num_speakers, model_size) | |
if transcription is None or diarization is None: | |
return "Error in processing audio file", "No diarization result" | |
return transcription, diarization | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Audio(type="filepath", label="Upload Audio"), | |
gr.Dropdown(choices=[1,2,3,4,5], label="Number of Speakers"), | |
gr.Dropdown(choices=['base', 'small', 'medium', 'large', 'transcriber'], label="Model Selection") | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription"), | |
gr.JSON(label="Diarization Output") | |
], | |
title="Audio Transcription and Speaker Diarization", | |
description="Upload your audio file to transcribe and analyze speaker diarization." | |
) | |
iface.launch() | |