File size: 12,893 Bytes
ffd16f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import gradio as gr
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import logging
from huggingface_hub import hf_hub_download
from huggingface_hub import login
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')  

# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Проверка наличия токена
if "HUGGINGFACE_TOKEN" not in os.environ:
    logger.error("HUGGINGFACE_TOKEN not found in environment variables!")
else:
    logger.info("HUGGINGFACE_TOKEN found")
    # Аутентификация с использованием токена
    login(token=os.environ["HUGGINGFACE_TOKEN"])
    logger.info("Logged in to Hugging Face")

# Определение размера изображения
IMG_SHAPE = (479, 1221, 3)

class SecureModel:
    _instance = None
    
    def __init__(self):
        try:
            logger.info("Attempting to download model files...")
            
            # Загружаем файл модели
            model_path = hf_hub_download(
                repo_id="Dianor/trading-model-private",
                filename="trading_modelbeta0.7.keras",
                token=os.environ["HUGGINGFACE_TOKEN"]
            )
            
            # Загружаем файл с кастомными слоями
            layers_path = hf_hub_download(
                repo_id="Dianor/trading-model-private",
                filename="custom_trading_layers.py",
                token=os.environ["HUGGINGFACE_TOKEN"]
            )
            
            logger.info(f"Files downloaded successfully")
            
            # Импортируем кастомные слои из скачанного модуля
            import importlib.util
            import sys
            
            # Загружаем модуль с кастомными слоями
            spec = importlib.util.spec_from_file_location("custom_trading_layers", layers_path)
            custom_module = importlib.util.module_from_spec(spec)
            sys.modules["custom_trading_layers"] = custom_module
            spec.loader.exec_module(custom_module)
            
            # Получаем словарь custom_objects
            custom_objects = custom_module.get_custom_objects()
            
            # Обновляем глобальные объекты TensorFlow
            tf.keras.utils.get_custom_objects().update(custom_objects)
            
            # Загружаем модель
            try:
                self.model = tf.keras.models.load_model(
                    model_path,
                    custom_objects=custom_objects,
                    compile=False
                )
            except Exception as load_error:
                logger.warning(f"Direct load failed: {load_error}")
                self.model = tf.keras.models.load_model(
                    model_path,
                    custom_objects=custom_objects,
                    compile=False
                )
                self.model.compile(
                    optimizer='adam',
                    loss={
                        'long_signal': 'binary_crossentropy',
                        'short_signal': 'binary_crossentropy'
                    },
                    metrics=['accuracy']
                )
                
            logger.info("Model loaded successfully")
        except Exception as e:
            logger.error(f"Failed to load model: {str(e)}")
            raise

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls()
        return cls._instance.model

def preprocess_image(image):
    try:
        logger.info(f"Starting preprocessing. Input shape: {image.shape}")
        
        # Конвертируем в RGB если нужно (если изображение в BGR)
        if len(image.shape) == 3 and image.shape[2] == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            
        image = cv2.resize(image, (IMG_SHAPE[1], IMG_SHAPE[0]))  
        
        # Используем ту же нормализацию
        image = image.astype('float32') / 255.0
        
        logger.info(f"Preprocessed shape: {image.shape}")
        logger.info(f"Value range: [{image.min():.3f}, {image.max():.3f}]")
        
        return image
        
    except Exception as e:
        logger.error(f"Error in preprocess_image: {str(e)}")
        raise

def analyze_trading_chart(input_image):
    try:
        model = SecureModel.get_instance()
        
        # Сохраняем оригинал для отображения
        display_image = input_image.copy()
        
        # Логируем исходное изображение
        logger.info(f"Raw input shape: {input_image.shape}")
        logger.info(f"Raw input range: [{input_image.min()}, {input_image.max()}]")
        
        # Изменяем размер изображения до требуемого 
        resized_image = cv2.resize(input_image, (1221, 479), interpolation=cv2.INTER_NEAREST)
        
        # Нормализуем изображение
        image = resized_image.astype('float32') / 255.0
        image = np.expand_dims(image, axis=0)  # Добавляем batch dimension
        
        # Логируем после обработки
        logger.info(f"Processed input shape: {image.shape}")
        logger.info(f"Processed input range: [{image.min():.3f}, {image.max():.3f}]")
        
        # Делаем предсказание
        predictions = model.predict(image, verbose=0)
        
        # Логируем сырые предсказания
        logger.info(f"Raw predictions: {predictions}")
        
        long_signal = float(predictions['long_signal'][0][0])
        short_signal = float(predictions['short_signal'][0][0])
        
        logger.info(f"Final predictions: LONG={long_signal:.3f}, SHORT={short_signal:.3f}")
        
        # Создаем визуализацию
        plt.style.use('dark_background')
        fig = plt.figure(figsize=(15, 10), facecolor='#1E222D')
        gs = fig.add_gridspec(2, 1, height_ratios=[3, 1], hspace=0.3)
        
        # График цены
        ax1 = fig.add_subplot(gs[0])
        ax1.imshow(display_image)  # Показываем оригинальное изображение
        ax1.set_title('Trading Chart Analysis', color='#B7BDD7', pad=10, fontsize=14)
        ax1.axis('off')
        
        # Панель сигналов
        ax2 = fig.add_subplot(gs[1])
        ax2.set_facecolor('#1E222D')
        
        bar_positions = [0, 1]
        signal_values = [long_signal, short_signal]
        colors = ['#26a69a', '#ef5350']
        labels = ['Long Signal', 'Short Signal']
        
        bars = ax2.bar(bar_positions, signal_values, color=colors)
        ax2.set_xticks(bar_positions)
        ax2.set_xticklabels(labels, color='#B7BDD7', fontsize=12)
        ax2.set_ylim(0, 1)
        ax2.set_ylabel('Signal Strength', color='#B7BDD7', fontsize=12)
        ax2.grid(True, alpha=0.2)
        ax2.tick_params(colors='#B7BDD7')
        
        # Добавляем значения над барами
        for bar in bars:
            height = bar.get_height()
            ax2.text(bar.get_x() + bar.get_width()/2., height,
                    f'{height:.3f}',
                    ha='center', va='bottom', color='#B7BDD7',
                    fontsize=12)
        
        ax2.axhline(y=0.8, color='white', linestyle='--', alpha=0.5, label='Signal Threshold')
        ax2.legend(loc='upper right', bbox_to_anchor=(0.98, 0.98))
        
        # Конвертируем график в изображение
        fig.canvas.draw()
        buf = fig.canvas.buffer_rgba()
        img = np.asarray(buf)
        plt.close(fig)
        
        return img
        
    except Exception as e:
        logger.error(f"Error in analyze_trading_chart: {str(e)}")
        logger.exception("Full traceback:")
        return display_image

# Создаем интерфейс с табами
def create_interface():
    with gr.Blocks(theme=gr.themes.Default()) as demo:
        gr.Markdown("""
        # 🚀 Revolutionary Neural Vision Trading

        ## Next-Generation AI Computer Vision for Cryptocurrency Trading

        Introducing the world's first neural network that trades cryptocurrency through pure visual comprehension—a breakthrough technology that sees charts just like professional traders do.

        This revolutionary AI doesn't rely on traditional indicators or mathematical patterns. Instead, it employs advanced computer vision to interpret market dynamics visually, analyzing real-time price action with human-like perception but machine-level precision.

        The system provides confidence-based entry signals, automatically executing trades when conviction reaches 0.9 or higher—mimicking the decision-making process of elite traders while eliminating emotional bias.

        ---

        ### Unprecedented Market Understanding:

        ❗️ Visual price action analysis based on pure Computer Vision

        ❗️ Dynamic support/resistance identification through visual context

        ❗️ Real-time decision making focused on the critical last candle

        ---

        Try it now! Upload your TradingView/Binance dark theme chart, or use our examples and experience trading intelligence that exists nowhere else in the market.

        **💼 Limited partnership opportunities available for qualified investors. Contact us to join the visual trading revolution.**
        """)
        
        with gr.Tabs():
            # Таб анализа графиков
            with gr.Tab("Signal Analysis"):
                with gr.Row():
                    # Левая колонка для ввода
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### Upload Your Trading Chart
                        Or use example charts below
                        """)
                        input_image = gr.Image(type="numpy", height=400)
                    
                    # Правая колонка для вывода
                    with gr.Column(scale=1):
                        gr.Markdown("""
                        ### Analysis Results
                        - Long Signal (Green): Upward movement probability
                        - Short Signal (Red): Downward movement probability
                        """)
                        output_image = gr.Image(type="numpy", height=400)
                
                analyze_btn = gr.Button("Analyze Chart", size="lg")
                analyze_btn.click(
                    fn=analyze_trading_chart,
                    inputs=input_image,
                    outputs=output_image
                )
                
                gr.Markdown("### Example Charts")
                gr.Examples(
                    examples=[
                        "example1.png", "example2.png", "example3.png", "example4.png", 
                        "example5.png", "example6.png", "example7.png", "example8.png", 
                        "example9.png", "example10.png"
                    ],
                    inputs=input_image,
                    outputs=output_image,
                    fn=analyze_trading_chart,
                    cache_examples=True,
                    examples_per_page=10  
                )
            
            # Таб с демонстрационным видео
            with gr.Tab("Trading Demo"):
                gr.Markdown("""
                ## Trading System Backtesting Demo
                Watch how our AI trading system performs in different market conditions.
                """)
                
                with gr.Row():
                    with gr.Column(scale=1, min_width=800):
                        gr.Video("demo.mp4")
                
                gr.Markdown("""
                ### What you're seeing in the demo:
                - Real-time trading decisions
                - Signal generation and execution
                - Performance metrics and profit visualization
                - Risk management in action
                """)

    return demo

if __name__ == "__main__":
    try:
        logger.info("Initializing model at startup...")
        SecureModel.get_instance()
        logger.info("Model initialized successfully")
    except Exception as e:
        logger.error(f"Failed to initialize model at startup: {str(e)}")
    
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )