Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# streamlit_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.document_loaders import TextLoader
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.document_loaders import DirectoryLoader
|
9 |
+
import dotenv
|
10 |
+
import os
|
11 |
+
from InstructorEmbedding import INSTRUCTOR
|
12 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
13 |
+
import google.generativeai as genai
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
dotenv.load_dotenv()
|
17 |
+
|
18 |
+
# Configure Google Generative AI
|
19 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
20 |
+
|
21 |
+
llm = genai.GenerativeModel('gemini-pro')
|
22 |
+
|
23 |
+
# Streamlit UI
|
24 |
+
st.title("AI Response Generator")
|
25 |
+
|
26 |
+
# Input text box
|
27 |
+
input_text = st.text_area("Enter your input text:", "What's the point of making myself less accessible?")
|
28 |
+
|
29 |
+
loader = DirectoryLoader('./', glob="./*.pdf", loader_cls=PyPDFLoader)
|
30 |
+
documents = loader.load()
|
31 |
+
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
33 |
+
texts = text_splitter.split_documents(documents)
|
34 |
+
|
35 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"})
|
36 |
+
|
37 |
+
persist_directory = 'db'
|
38 |
+
embedding = instructor_embeddings
|
39 |
+
|
40 |
+
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
|
41 |
+
vectordb.persist()
|
42 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
43 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
44 |
+
|
45 |
+
# Function to generate response
|
46 |
+
def generate_response(input_text):
|
47 |
+
|
48 |
+
docs = retriever.get_relevant_documents(input_text)
|
49 |
+
|
50 |
+
text = ""
|
51 |
+
for doc in docs:
|
52 |
+
text += doc.page_content
|
53 |
+
|
54 |
+
new_input_text = f"Given the below details:\n{text}\n\n do the following \n{input_text}\n"
|
55 |
+
response = llm.generate_content(new_input_text)
|
56 |
+
|
57 |
+
return response.text
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
# Button to generate response
|
62 |
+
if st.button("Generate Response"):
|
63 |
+
# Generate response
|
64 |
+
response_text = generate_response(input_text)
|
65 |
+
|
66 |
+
# Display the response
|
67 |
+
st.subheader("Generated Response:")
|
68 |
+
st.write(response_text)
|