Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,317 Bytes
0f56e8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import gc
import os
import torch
from extern.depthcrafter.infer import DepthCrafterDemo
# from extern.video_depth_anything.vdademo import VDADemo
import numpy as np
import torch
from transformers import T5EncoderModel
from omegaconf import OmegaConf
from PIL import Image
from models.crosstransformer3d import CrossTransformer3DModel
from models.autoencoder_magvit import AutoencoderKLCogVideoX
from models.pipeline_trajectorycrafter import TrajCrafter_Pipeline
from models.utils import *
from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from transformers import AutoProcessor, Blip2ForConditionalGeneration
class TrajCrafter:
def __init__(self, opts, gradio=False):
self.funwarp = Warper(device=opts.device)
# self.depth_estimater = VDADemo(pre_train_path=opts.pre_train_path_vda,device=opts.device)
self.depth_estimater = DepthCrafterDemo(unet_path=opts.unet_path,pre_train_path=opts.pre_train_path,cpu_offload=opts.cpu_offload,device=opts.device)
self.caption_processor = AutoProcessor.from_pretrained(opts.blip_path)
self.captioner = Blip2ForConditionalGeneration.from_pretrained(opts.blip_path, torch_dtype=torch.float16).to(opts.device)
self.setup_diffusion(opts)
if gradio:
self.opts=opts
def infer_gradual(self,opts):
frames = read_video_frames(opts.video_path,opts.video_length,opts.stride,opts.max_res)
prompt = self.get_caption(opts,frames[opts.video_length//2])
# depths= self.depth_estimater.infer(frames, opts.near, opts.far).to(opts.device)
depths= self.depth_estimater.infer(frames, opts.near, opts.far, opts.depth_inference_steps, opts.depth_guidance_scale, window_size=opts.window_size, overlap=opts.overlap).to(opts.device)
frames = torch.from_numpy(frames).permute(0,3,1,2).to(opts.device)*2.-1. # 49 576 1024 3 -> 49 3 576 1024, [-1,1]
assert frames.shape[0] == opts.video_length
pose_s, pose_t, K = self.get_poses(opts,depths,num_frames = opts.video_length)
warped_images = []
masks = []
for i in tqdm(range(opts.video_length)):
warped_frame2, mask2, warped_depth2, flow12 = self.funwarp.forward_warp(frames[i:i+1], None, depths[i:i+1], pose_s[i:i+1], pose_t[i:i+1], K[i:i+1], None, opts.mask,twice=False)
warped_images.append(warped_frame2)
masks.append(mask2)
cond_video = (torch.cat(warped_images)+1.)/2.
cond_masks = torch.cat(masks)
frames = F.interpolate(frames, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_video = F.interpolate(cond_video, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_masks = F.interpolate(cond_masks, size=opts.sample_size, mode='nearest')
save_video((frames.permute(0,2,3,1)+1.)/2., os.path.join(opts.save_dir,'input.mp4'),fps=opts.fps)
save_video(cond_video.permute(0,2,3,1), os.path.join(opts.save_dir,'render.mp4'),fps=opts.fps)
save_video(cond_masks.repeat(1,3,1,1).permute(0,2,3,1), os.path.join(opts.save_dir,'mask.mp4'),fps=opts.fps)
frames = (frames.permute(1,0,2,3).unsqueeze(0)+1.)/2.
frames_ref = frames[:,:,:10,:,:]
cond_video = cond_video.permute(1,0,2,3).unsqueeze(0)
cond_masks = (1.-cond_masks.permute(1,0,2,3).unsqueeze(0))*255.
generator = torch.Generator(device=opts.device).manual_seed(opts.seed)
del self.depth_estimater
del self.caption_processor
del self.captioner
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
sample = self.pipeline(
prompt,
num_frames = opts.video_length,
negative_prompt = opts.negative_prompt,
height = opts.sample_size[0],
width = opts.sample_size[1],
generator = generator,
guidance_scale = opts.diffusion_guidance_scale,
num_inference_steps = opts.diffusion_inference_steps,
video = cond_video,
mask_video = cond_masks,
reference = frames_ref,
).videos
save_video(sample[0].permute(1,2,3,0), os.path.join(opts.save_dir,'gen.mp4'), fps=opts.fps)
viz = True
if viz:
tensor_left = frames[0].to(opts.device)
tensor_right = sample[0].to(opts.device)
interval = torch.ones(3, 49, 384, 30).to(opts.device)
result = torch.cat((tensor_left, interval, tensor_right), dim=3)
result_reverse = torch.flip(result, dims=[1])
final_result = torch.cat((result, result_reverse[:,1:,:,:]), dim=1)
save_video(final_result.permute(1,2,3,0), os.path.join(opts.save_dir,'viz.mp4'), fps=opts.fps*2)
def infer_direct(self,opts):
opts.cut = 20
frames = read_video_frames(opts.video_path,opts.video_length,opts.stride,opts.max_res)
prompt = self.get_caption(opts,frames[opts.video_length//2])
# depths= self.depth_estimater.infer(frames, opts.near, opts.far).to(opts.device)
depths= self.depth_estimater.infer(frames, opts.near, opts.far, opts.depth_inference_steps, opts.depth_guidance_scale, window_size=opts.window_size, overlap=opts.overlap).to(opts.device)
frames = torch.from_numpy(frames).permute(0,3,1,2).to(opts.device)*2.-1. # 49 576 1024 3 -> 49 3 576 1024, [-1,1]
assert frames.shape[0] == opts.video_length
pose_s, pose_t, K = self.get_poses(opts,depths,num_frames = opts.cut)
warped_images = []
masks = []
for i in tqdm(range(opts.video_length)):
if i < opts.cut:
warped_frame2, mask2, warped_depth2, flow12 = self.funwarp.forward_warp(frames[0:1], None, depths[0:1], pose_s[0:1], pose_t[i:i+1], K[0:1], None, opts.mask,twice=False)
warped_images.append(warped_frame2)
masks.append(mask2)
else:
warped_frame2, mask2, warped_depth2, flow12 = self.funwarp.forward_warp(frames[i-opts.cut:i-opts.cut+1], None, depths[i-opts.cut:i-opts.cut+1], pose_s[0:1], pose_t[-1:], K[0:1], None, opts.mask,twice=False)
warped_images.append(warped_frame2)
masks.append(mask2)
cond_video = (torch.cat(warped_images)+1.)/2.
cond_masks = torch.cat(masks)
frames = F.interpolate(frames, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_video = F.interpolate(cond_video, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_masks = F.interpolate(cond_masks, size=opts.sample_size, mode='nearest')
save_video((frames[:opts.video_length-opts.cut].permute(0,2,3,1)+1.)/2., os.path.join(opts.save_dir,'input.mp4'),fps=opts.fps)
save_video(cond_video[opts.cut:].permute(0,2,3,1), os.path.join(opts.save_dir,'render.mp4'),fps=opts.fps)
save_video(cond_masks[opts.cut:].repeat(1,3,1,1).permute(0,2,3,1), os.path.join(opts.save_dir,'mask.mp4'),fps=opts.fps)
frames = (frames.permute(1,0,2,3).unsqueeze(0)+1.)/2.
frames_ref = frames[:,:,:10,:,:]
cond_video = cond_video.permute(1,0,2,3).unsqueeze(0)
cond_masks = (1.-cond_masks.permute(1,0,2,3).unsqueeze(0))*255.
generator = torch.Generator(device=opts.device).manual_seed(opts.seed)
del self.depth_estimater
del self.caption_processor
del self.captioner
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
sample = self.pipeline(
prompt,
num_frames = opts.video_length,
negative_prompt = opts.negative_prompt,
height = opts.sample_size[0],
width = opts.sample_size[1],
generator = generator,
guidance_scale = opts.diffusion_guidance_scale,
num_inference_steps = opts.diffusion_inference_steps,
video = cond_video,
mask_video = cond_masks,
reference = frames_ref,
).videos
save_video(sample[0].permute(1,2,3,0)[opts.cut:], os.path.join(opts.save_dir,'gen.mp4'), fps=opts.fps)
viz = True
if viz:
tensor_left = frames[0][:,:opts.video_length-opts.cut,...].to(opts.device)
tensor_right = sample[0][:,opts.cut:,...].to(opts.device)
interval = torch.ones(3, opts.video_length-opts.cut, 384, 30).to(opts.device)
result = torch.cat((tensor_left, interval, tensor_right), dim=3)
result_reverse = torch.flip(result, dims=[1])
final_result = torch.cat((result, result_reverse[:,1:,:,:]), dim=1)
save_video(final_result.permute(1,2,3,0), os.path.join(opts.save_dir,'viz.mp4'), fps=opts.fps*2)
def infer_bullet(self,opts):
frames = read_video_frames(opts.video_path,opts.video_length,opts.stride,opts.max_res)
prompt = self.get_caption(opts,frames[opts.video_length//2])
# depths= self.depth_estimater.infer(frames, opts.near, opts.far).to(opts.device)
depths= self.depth_estimater.infer(frames, opts.near, opts.far, opts.depth_inference_steps, opts.depth_guidance_scale, window_size=opts.window_size, overlap=opts.overlap).to(opts.device)
frames = torch.from_numpy(frames).permute(0,3,1,2).to(opts.device)*2.-1. # 49 576 1024 3 -> 49 3 576 1024, [-1,1]
assert frames.shape[0] == opts.video_length
pose_s, pose_t, K = self.get_poses(opts,depths, num_frames = opts.video_length)
warped_images = []
masks = []
for i in tqdm(range(opts.video_length)):
warped_frame2, mask2, warped_depth2, flow12 = self.funwarp.forward_warp(frames[-1:], None, depths[-1:], pose_s[0:1], pose_t[i:i+1], K[0:1], None, opts.mask,twice=False)
warped_images.append(warped_frame2)
masks.append(mask2)
cond_video = (torch.cat(warped_images)+1.)/2.
cond_masks = torch.cat(masks)
frames = F.interpolate(frames, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_video = F.interpolate(cond_video, size=opts.sample_size, mode='bilinear', align_corners=False)
cond_masks = F.interpolate(cond_masks, size=opts.sample_size, mode='nearest')
save_video((frames.permute(0,2,3,1)+1.)/2., os.path.join(opts.save_dir,'input.mp4'),fps=opts.fps)
save_video(cond_video.permute(0,2,3,1), os.path.join(opts.save_dir,'render.mp4'),fps=opts.fps)
save_video(cond_masks.repeat(1,3,1,1).permute(0,2,3,1), os.path.join(opts.save_dir,'mask.mp4'),fps=opts.fps)
frames = (frames.permute(1,0,2,3).unsqueeze(0)+1.)/2.
frames_ref = frames[:,:,-10:,:,:]
cond_video = cond_video.permute(1,0,2,3).unsqueeze(0)
cond_masks = (1.-cond_masks.permute(1,0,2,3).unsqueeze(0))*255.
generator = torch.Generator(device=opts.device).manual_seed(opts.seed)
del self.depth_estimater
del self.caption_processor
del self.captioner
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
sample = self.pipeline(
prompt,
num_frames = opts.video_length,
negative_prompt = opts.negative_prompt,
height = opts.sample_size[0],
width = opts.sample_size[1],
generator = generator,
guidance_scale = opts.diffusion_guidance_scale,
num_inference_steps = opts.diffusion_inference_steps,
video = cond_video,
mask_video = cond_masks,
reference = frames_ref,
).videos
save_video(sample[0].permute(1,2,3,0), os.path.join(opts.save_dir,'gen.mp4'), fps=opts.fps)
viz = True
if viz:
tensor_left = frames[0].to(opts.device)
tensor_left_full = torch.cat([tensor_left,tensor_left[:,-1:,:,:].repeat(1,48,1,1)],dim=1)
tensor_right = sample[0].to(opts.device)
tensor_right_full = torch.cat([tensor_left,tensor_right[:,1:,:,:]],dim=1)
interval = torch.ones(3, 49*2-1, 384, 30).to(opts.device)
result = torch.cat((tensor_left_full, interval, tensor_right_full), dim=3)
result_reverse = torch.flip(result, dims=[1])
final_result = torch.cat((result, result_reverse[:,1:,:,:]), dim=1)
save_video(final_result.permute(1,2,3,0), os.path.join(opts.save_dir,'viz.mp4'), fps=opts.fps*4)
def get_caption(self,opts,image):
image_array = (image * 255).astype(np.uint8)
pil_image = Image.fromarray(image_array)
inputs = self.caption_processor(images=pil_image, return_tensors="pt").to(opts.device, torch.float16)
generated_ids = self.captioner.generate(**inputs)
generated_text = self.caption_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text + opts.refine_prompt
def get_poses(self,opts,depths,num_frames):
radius = depths[0,0,depths.shape[-2]//2,depths.shape[-1]//2].cpu()*opts.radius_scale
radius = min(radius, 5)
cx = 512. #depths.shape[-1]//2
cy = 288. #depths.shape[-2]//2
f = 500 #500.
K = torch.tensor([[f, 0., cx],[ 0., f, cy],[ 0., 0., 1.]]).repeat(num_frames,1,1).to(opts.device)
c2w_init = torch.tensor([[-1., 0., 0., 0.],
[ 0., 1., 0., 0.],
[ 0., 0., -1., 0.],
[ 0., 0., 0., 1.]]).to(opts.device).unsqueeze(0)
if opts.camera == 'target':
dtheta, dphi, dr, dx, dy = opts.target_pose
poses = generate_traj_specified(c2w_init, dtheta, dphi, dr*radius, dx, dy, num_frames, opts.device)
elif opts.camera =='traj':
with open(opts.traj_txt, 'r') as file:
lines = file.readlines()
theta = [float(i) for i in lines[0].split()]
phi = [float(i) for i in lines[1].split()]
r = [float(i)*radius for i in lines[2].split()]
poses = generate_traj_txt(c2w_init, phi, theta, r, num_frames, opts.device)
poses[:,2, 3] = poses[:,2, 3] + radius
pose_s = poses[opts.anchor_idx:opts.anchor_idx+1].repeat(num_frames,1,1)
pose_t = poses
return pose_s, pose_t, K
def setup_diffusion(self,opts):
# transformer = CrossTransformer3DModel.from_pretrained_cus(opts.transformer_path).to(opts.weight_dtype)
transformer = CrossTransformer3DModel.from_pretrained(opts.transformer_path).to(opts.weight_dtype)
# transformer = transformer.to(opts.weight_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained(
opts.model_name,
subfolder="vae"
).to(opts.weight_dtype)
text_encoder = T5EncoderModel.from_pretrained(
opts.model_name, subfolder="text_encoder", torch_dtype=opts.weight_dtype
)
# Get Scheduler
Choosen_Scheduler = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM_Cog": CogVideoXDDIMScheduler,
"DDIM_Origin": DDIMScheduler,
}[opts.sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
opts.model_name,
subfolder="scheduler"
)
self.pipeline = TrajCrafter_Pipeline.from_pretrained(
opts.model_name,
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
torch_dtype=opts.weight_dtype
)
if opts.low_gpu_memory_mode:
self.pipeline.enable_sequential_cpu_offload()
else:
self.pipeline.enable_model_cpu_offload()
def run_gradio(self,input_video, stride, radius_scale, pose, steps, seed):
frames = read_video_frames(input_video, self.opts.video_length, stride,self.opts.max_res)
prompt = self.get_caption(self.opts,frames[self.opts.video_length//2])
# depths= self.depth_estimater.infer(frames, opts.near, opts.far).to(opts.device)
depths= self.depth_estimater.infer(frames, self.opts.near, self.opts.far, self.opts.depth_inference_steps, self.opts.depth_guidance_scale, window_size=self.opts.window_size, overlap=self.opts.overlap).to(self.opts.device)
frames = torch.from_numpy(frames).permute(0,3,1,2).to(self.opts.device)*2.-1. # 49 576 1024 3 -> 49 3 576 1024, [-1,1]
num_frames = frames.shape[0]
assert num_frames == self.opts.video_length
radius_scale = float(radius_scale)
radius = depths[0,0,depths.shape[-2]//2,depths.shape[-1]//2].cpu()*radius_scale
radius = min(radius, 5)
cx = 512. #depths.shape[-1]//2
cy = 288. #depths.shape[-2]//2
f = 500 #500.
K = torch.tensor([[f, 0., cx],[ 0., f, cy],[ 0., 0., 1.]]).repeat(num_frames,1,1).to(self.opts.device)
c2w_init = torch.tensor([[-1., 0., 0., 0.],
[ 0., 1., 0., 0.],
[ 0., 0., -1., 0.],
[ 0., 0., 0., 1.]]).to(self.opts.device).unsqueeze(0)
# import pdb
# pdb.set_trace()
theta,phi,r,x,y = [float(i) for i in pose.split(';')]
# theta,phi,r,x,y = [float(i) for i in theta.split()],[float(i) for i in phi.split()],[float(i) for i in r.split()],[float(i) for i in x.split()],[float(i) for i in y.split()]
# target mode
poses = generate_traj_specified(c2w_init, theta, phi, r*radius, x, y, num_frames, self.opts.device)
poses[:,2, 3] = poses[:,2, 3] + radius
pose_s = poses[self.opts.anchor_idx:self.opts.anchor_idx+1].repeat(num_frames,1,1)
pose_t = poses
warped_images = []
masks = []
for i in tqdm(range(self.opts.video_length)):
warped_frame2, mask2, warped_depth2, flow12 = self.funwarp.forward_warp(frames[i:i+1], None, depths[i:i+1], pose_s[i:i+1], pose_t[i:i+1], K[i:i+1], None, self.opts.mask,twice=False)
warped_images.append(warped_frame2)
masks.append(mask2)
cond_video = (torch.cat(warped_images)+1.)/2.
cond_masks = torch.cat(masks)
frames = F.interpolate(frames, size=self.opts.sample_size, mode='bilinear', align_corners=False)
cond_video = F.interpolate(cond_video, size=self.opts.sample_size, mode='bilinear', align_corners=False)
cond_masks = F.interpolate(cond_masks, size=self.opts.sample_size, mode='nearest')
save_video((frames.permute(0,2,3,1)+1.)/2., os.path.join(self.opts.save_dir,'input.mp4'),fps=self.opts.fps)
save_video(cond_video.permute(0,2,3,1), os.path.join(self.opts.save_dir,'render.mp4'),fps=self.opts.fps)
save_video(cond_masks.repeat(1,3,1,1).permute(0,2,3,1), os.path.join(self.opts.save_dir,'mask.mp4'),fps=self.opts.fps)
frames = (frames.permute(1,0,2,3).unsqueeze(0)+1.)/2.
frames_ref = frames[:,:,:10,:,:]
cond_video = cond_video.permute(1,0,2,3).unsqueeze(0)
cond_masks = (1.-cond_masks.permute(1,0,2,3).unsqueeze(0))*255.
generator = torch.Generator(device=self.opts.device).manual_seed(seed)
# del self.depth_estimater
# del self.caption_processor
# del self.captioner
# gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
sample = self.pipeline(
prompt,
num_frames = self.opts.video_length,
negative_prompt = self.opts.negative_prompt,
height = self.opts.sample_size[0],
width = self.opts.sample_size[1],
generator = generator,
guidance_scale = self.opts.diffusion_guidance_scale,
num_inference_steps = steps,
video = cond_video,
mask_video = cond_masks,
reference = frames_ref,
).videos
save_video(sample[0].permute(1,2,3,0), os.path.join(self.opts.save_dir,'gen.mp4'), fps=self.opts.fps)
viz = True
if viz:
tensor_left = frames[0].to(self.opts.device)
tensor_right = sample[0].to(self.opts.device)
interval = torch.ones(3, 49, 384, 30).to(self.opts.device)
result = torch.cat((tensor_left, interval, tensor_right), dim=3)
result_reverse = torch.flip(result, dims=[1])
final_result = torch.cat((result, result_reverse[:,1:,:,:]), dim=1)
save_video(final_result.permute(1,2,3,0), os.path.join(self.opts.save_dir,'viz.mp4'), fps=self.opts.fps*2)
return os.path.join(self.opts.save_dir,'viz.mp4') |