TrajectoryCrafter / inference.py
TrajectoryCrafter's picture
update
0f56e8b
from demo import TrajCrafter
import os
from datetime import datetime
import argparse
import torch
def get_parser():
parser = argparse.ArgumentParser()
## general
parser.add_argument('--video_path',type=str, help='Input path')
parser.add_argument('--out_dir',type=str,default='./experiments/', help='Output dir')
parser.add_argument('--device', type=str, default='cuda:0', help='The device to use')
parser.add_argument('--exp_name', type=str, default=None, help='Experiment name, use video file name by default')
parser.add_argument('--seed', type=int, default=43, help='Random seed for reproducibility')
parser.add_argument('--video_length', type=int, default=49, help='Length of the video frames')
parser.add_argument('--fps', type=int, default=10, help='Fps for saved video')
parser.add_argument('--stride', type=int, default=1, help='Sampling stride for input video')
parser.add_argument('--server_name', type=str, help='Server IP address')
## render
parser.add_argument('--radius_scale',type=float,default=1.0 , help='Scale factor for the spherical radius')
parser.add_argument('--camera',type=str,default='traj', help='traj or target' )
parser.add_argument('--mode',type=str,default='gradual', help='gradual, bullet or direct' )
parser.add_argument('--mask',action='store_true',default=False, help='Clean the pcd if true' )
parser.add_argument('--traj_txt', type=str, help="Required for 'traj' camera, a txt file that specify camera trajectory")
parser.add_argument('--target_pose',nargs=5,type=float, help="Required for 'target' mode, specify target camera pose, <theta phi r x y>" )
parser.add_argument('--near', type=float, default=0.0001, help='Near clipping plane distance')
parser.add_argument('--far', type=float, default=10000.0, help='Far clipping plane distance')
parser.add_argument('--anchor_idx', type=int, default=0, help='One GT frame')
## diffusion
parser.add_argument('--low_gpu_memory_mode', type=bool, default=False, help='Enable low GPU memory mode')
# parser.add_argument('--model_name', type=str, default='checkpoints/CogVideoX-Fun-V1.1-5b-InP', help='Path to the model')
parser.add_argument('--model_name', type=str, default='alibaba-pai/CogVideoX-Fun-V1.1-5b-InP', help='Path to the model')
parser.add_argument('--sampler_name', type=str, choices=["Euler", "Euler A", "DPM++", "PNDM", "DDIM_Cog", "DDIM_Origin"], default='DDIM_Origin', help='Choose the sampler')
# parser.add_argument('--transformer_path', type=str, default='checkpoints/TrajectoryCrafter/crosstransformer', help='Path to the pretrained transformer model')
parser.add_argument('--transformer_path', type=str, default="TrajectoryCrafter/TrajectoryCrafter", help='Path to the pretrained transformer model')
parser.add_argument('--sample_size', type=int, nargs=2, default=[384, 672], help='Sample size as [height, width]')
parser.add_argument('--diffusion_guidance_scale', type=float, default=6.0, help='Guidance scale for inference')
parser.add_argument('--diffusion_inference_steps', type=int, default=50, help='Number of inference steps')
parser.add_argument('--prompt', type=str, default=None, help='Prompt for video generation')
parser.add_argument('--negative_prompt', type=str, default="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.", help='Negative prompt for video generation')
parser.add_argument('--refine_prompt', type=str, default=". The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", help='Prompt for video generation')
parser.add_argument('--blip_path',type=str,default="Salesforce/blip2-opt-2.7b")
## depth
# parser.add_argument('--unet_path', type=str, default='checkpoints/DepthCrafter', help='Path to the UNet model')
parser.add_argument('--unet_path', type=str, default="tencent/DepthCrafter", help='Path to the UNet model')
parser.add_argument('--pre_train_path_vda', type=str, default='checkpoints/video_depth_anything_vitl.pth', help='Path to the pre-trained model')
# parser.add_argument('--pre_train_path', type=str, default='checkpoints/stable-video-diffusion-img2vid-xt', help='Path to the pre-trained model')
parser.add_argument('--pre_train_path', type=str, default="stabilityai/stable-video-diffusion-img2vid-xt", help='Path to the pre-trained model')
parser.add_argument('--cpu_offload', type=str, default='model', help='CPU offload strategy')
parser.add_argument('--depth_inference_steps', type=int, default=5, help='Number of inference steps')
parser.add_argument('--depth_guidance_scale', type=float, default=1.0, help='Guidance scale for inference')
parser.add_argument('--window_size', type=int, default=110, help='Window size for processing')
parser.add_argument('--overlap', type=int, default=25, help='Overlap size for processing')
parser.add_argument('--max_res', type=int, default=1024, help='Maximum resolution for processing')
return parser
if __name__=="__main__":
parser = get_parser() # infer config.py
opts = parser.parse_args()
opts.weight_dtype = torch.bfloat16
if opts.exp_name == None:
prefix = datetime.now().strftime("%Y%m%d_%H%M")
opts.exp_name = f'{prefix}_{os.path.splitext(os.path.basename(opts.video_path))[0]}'
opts.save_dir = os.path.join(opts.out_dir,opts.exp_name)
os.makedirs(opts.save_dir,exist_ok=True)
pvd = TrajCrafter(opts)
if opts.mode == 'gradual':
pvd.infer_gradual(opts)
elif opts.mode == 'direct':
pvd.infer_direct(opts)
elif opts.mode == 'bullet':
pvd.infer_bullet(opts)