Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import os | |
import json | |
import torch | |
import glob | |
import torch.nn.functional as F | |
from torch import nn | |
import math | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class CogVideoXPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
embed_dim: int = 1920, | |
text_embed_dim: int = 4096, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
self.text_proj = nn.Linear(text_embed_dim, embed_dim) | |
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): | |
r""" | |
Args: | |
text_embeds (`torch.Tensor`): | |
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). | |
image_embeds (`torch.Tensor`): | |
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). | |
""" | |
text_embeds = self.text_proj(text_embeds) | |
batch, num_frames, channels, height, width = image_embeds.shape | |
image_embeds = image_embeds.reshape(-1, channels, height, width) | |
image_embeds = self.proj(image_embeds) | |
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) | |
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] | |
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] | |
embeds = torch.cat( | |
[text_embeds, image_embeds], dim=1 | |
).contiguous() # [batch, seq_length + num_frames x height x width, channels] | |
return embeds | |
class RefPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
embed_dim: int = 1920, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
def forward(self, image_embeds: torch.Tensor): | |
r""" | |
Args: | |
image_embeds (`torch.Tensor`): | |
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). | |
""" | |
batch, num_frames, channels, height, width = image_embeds.shape | |
image_embeds = image_embeds.reshape(-1, channels, height, width) | |
image_embeds = self.proj(image_embeds) | |
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) | |
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] | |
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] | |
return image_embeds | |
class CogVideoXBlock(nn.Module): | |
r""" | |
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
time_embed_dim (`int`): | |
The number of channels in timestep embedding. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
# 1. Self Attention | |
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXAttnProcessor2_0(), | |
) | |
# 2. Feed Forward | |
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.size(1) | |
# norm & modulate | |
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# attention | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + gate_msa * attn_hidden_states | |
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states | |
# norm & modulate | |
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# feed-forward | |
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] | |
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] | |
return hidden_states, encoder_hidden_states | |
def reshape_tensor(x, heads): | |
""" | |
Reshapes the input tensor for multi-head attention. | |
Args: | |
x (torch.Tensor): The input tensor with shape (batch_size, length, width). | |
heads (int): The number of attention heads. | |
Returns: | |
torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width). | |
""" | |
bs, length, width = x.shape | |
x = x.view(bs, length, heads, -1) | |
x = x.transpose(1, 2) | |
x = x.reshape(bs, heads, length, -1) | |
return x | |
class PerceiverCrossAttention(nn.Module): | |
""" | |
Args: | |
dim (int): Dimension of the input latent and output. Default is 3072. | |
dim_head (int): Dimension of each attention head. Default is 128. | |
heads (int): Number of attention heads. Default is 16. | |
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. | |
Attributes: | |
scale (float): Scaling factor used in dot-product attention for numerical stability. | |
norm1 (nn.LayerNorm): Layer normalization applied to the input image features. | |
norm2 (nn.LayerNorm): Layer normalization applied to the latent features. | |
to_q (nn.Linear): Linear layer for projecting the latent features into queries. | |
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. | |
to_out (nn.Linear): Linear layer for outputting the final result after attention. | |
""" | |
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
# Layer normalization to stabilize training | |
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) | |
self.norm2 = nn.LayerNorm(dim) | |
# Linear transformations to produce queries, keys, and values | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: | |
- batch_size (b): Number of samples in the batch. | |
- n1: Sequence length (e.g., number of patches or tokens). | |
- D: Feature dimension. | |
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: | |
- n2: Number of latent elements. | |
Returns: | |
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). | |
""" | |
# Apply layer normalization to the input image and latent features | |
x = self.norm1(x) | |
latents = self.norm2(latents) | |
b, seq_len, _ = latents.shape | |
# Compute queries, keys, and values | |
q = self.to_q(latents) | |
k, v = self.to_kv(x).chunk(2, dim=-1) | |
# Reshape tensors to split into attention heads | |
q = reshape_tensor(q, self.heads) | |
k = reshape_tensor(k, self.heads) | |
v = reshape_tensor(v, self.heads) | |
# Compute attention weights | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
# Compute the output via weighted combination of values | |
out = weight @ v | |
# Reshape and permute to prepare for final linear transformation | |
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) | |
return self.to_out(out) | |
class CrossTransformer3DModel(ModelMixin, ConfigMixin): | |
""" | |
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). | |
Parameters: | |
num_attention_heads (`int`, defaults to `30`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
in_channels (`int`, defaults to `16`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `16`): | |
The number of channels in the output. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
time_embed_dim (`int`, defaults to `512`): | |
Output dimension of timestep embeddings. | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
num_layers (`int`, defaults to `30`): | |
The number of layers of Transformer blocks to use. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
attention_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in the attention projection layers. | |
sample_width (`int`, defaults to `90`): | |
The width of the input latents. | |
sample_height (`int`, defaults to `60`): | |
The height of the input latents. | |
sample_frames (`int`, defaults to `49`): | |
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 | |
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, | |
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with | |
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). | |
patch_size (`int`, defaults to `2`): | |
The size of the patches to use in the patch embedding layer. | |
temporal_compression_ratio (`int`, defaults to `4`): | |
The compression ratio across the temporal dimension. See documentation for `sample_frames`. | |
max_text_seq_length (`int`, defaults to `226`): | |
The maximum sequence length of the input text embeddings. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
timestep_activation_fn (`str`, defaults to `"silu"`): | |
Activation function to use when generating the timestep embeddings. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether or not to use elementwise affine in normalization layers. | |
norm_eps (`float`, defaults to `1e-5`): | |
The epsilon value to use in normalization layers. | |
spatial_interpolation_scale (`float`, defaults to `1.875`): | |
Scaling factor to apply in 3D positional embeddings across spatial dimensions. | |
temporal_interpolation_scale (`float`, defaults to `1.0`): | |
Scaling factor to apply in 3D positional embeddings across temporal dimensions. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: int = 16, | |
out_channels: Optional[int] = 16, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
time_embed_dim: int = 512, | |
text_embed_dim: int = 4096, | |
num_layers: int = 30, | |
dropout: float = 0.0, | |
attention_bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
patch_size: int = 2, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
activation_fn: str = "gelu-approximate", | |
timestep_activation_fn: str = "silu", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_rotary_positional_embeddings: bool = False, | |
add_noise_in_inpaint_model: bool = False, | |
is_train_cross: bool = False, | |
cross_attn_in_channels: int = 16, | |
cross_attn_interval: int = 2, | |
cross_attn_dim_head: int = 128, | |
cross_attn_num_heads: int = 16, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
post_patch_height = sample_height // patch_size | |
post_patch_width = sample_width // patch_size | |
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1 | |
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames | |
self.post_patch_height = post_patch_height | |
self.post_patch_width = post_patch_width | |
self.post_time_compression_frames = post_time_compression_frames | |
self.patch_size = patch_size | |
# 1. Patch embedding | |
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True) | |
self.embedding_dropout = nn.Dropout(dropout) | |
# 2. 3D positional embeddings | |
spatial_pos_embedding = get_3d_sincos_pos_embed( | |
inner_dim, | |
(post_patch_width, post_patch_height), | |
post_time_compression_frames, | |
spatial_interpolation_scale, | |
temporal_interpolation_scale, | |
) | |
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1) | |
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False) | |
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding) | |
self.register_buffer("pos_embedding", pos_embedding, persistent=False) | |
# 3. Time embeddings | |
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
# 4. Define spatio-temporal transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
CogVideoXBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
# 5. Output blocks | |
self.norm_out = AdaLayerNorm( | |
embedding_dim=time_embed_dim, | |
output_dim=2 * inner_dim, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
chunk_dim=1, | |
) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
self.is_train_cross = is_train_cross | |
if is_train_cross: | |
# cross configs | |
self.inner_dim = inner_dim | |
self.cross_attn_interval = cross_attn_interval | |
self.num_cross_attn = num_layers // cross_attn_interval | |
self.cross_attn_dim_head = cross_attn_dim_head | |
self.cross_attn_num_heads = cross_attn_num_heads | |
self.cross_attn_kv_dim = None | |
self.ref_patch_embed = RefPatchEmbed(patch_size, cross_attn_in_channels, inner_dim, bias=True) | |
self._init_cross_inputs() | |
def _init_cross_inputs(self): | |
device = self.device | |
weight_dtype = self.dtype | |
self.perceiver_cross_attention = nn.ModuleList( | |
[ | |
PerceiverCrossAttention( | |
dim=self.inner_dim, | |
dim_head=self.cross_attn_dim_head, | |
heads=self.cross_attn_num_heads, | |
kv_dim=self.cross_attn_kv_dim, | |
).to(device, dtype=weight_dtype) | |
for _ in range(self.num_cross_attn) | |
] | |
) | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, #noise | |
encoder_hidden_states: torch.Tensor, #text | |
timestep: Union[int, float, torch.LongTensor], | |
timestep_cond: Optional[torch.Tensor] = None, | |
inpaint_latents: Optional[torch.Tensor] = None, #condition | |
cross_latents: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
return_dict: bool = True, | |
): | |
batch_size, num_frames, channels, height, width = hidden_states.shape | |
# 1. Time embedding | |
timesteps = timestep | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=hidden_states.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
# 2. Patch embedding | |
# [2, 13, 16, 48, 84] cat [2, 13, 17, 48, 84] = [2, 13, 33, 48, 84] | |
hidden_states = torch.concat([hidden_states, inpaint_latents], 2) | |
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) | |
if self.is_train_cross: | |
cross_hidden_states = self.ref_patch_embed(cross_latents) | |
# 3. Position embedding | |
text_seq_length = encoder_hidden_states.shape[1] | |
if not self.config.use_rotary_positional_embeddings: | |
seq_length = height * width * num_frames // (self.config.patch_size**2) | |
# pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length] | |
pos_embeds = self.pos_embedding | |
emb_size = hidden_states.size()[-1] | |
pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size) | |
pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3]) | |
pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False) | |
pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) | |
pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1) | |
pos_embeds = pos_embeds[:, : text_seq_length + seq_length] | |
hidden_states = hidden_states + pos_embeds | |
hidden_states = self.embedding_dropout(hidden_states) | |
# seperate | |
encoder_hidden_states = hidden_states[:, :text_seq_length] | |
hidden_states = hidden_states[:, text_seq_length:] | |
# 4. Transformer blocks | |
ca_idx = 0 | |
for i, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
emb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=emb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
if self.is_train_cross: | |
if i % self.cross_attn_interval == 0: | |
hidden_states = hidden_states + self.perceiver_cross_attention[ca_idx]( | |
cross_hidden_states, hidden_states | |
) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072]) | |
ca_idx += 1 | |
# if not self.config.use_rotary_positional_embeddings: | |
# # CogVideoX-2B | |
# hidden_states = self.norm_final(hidden_states) | |
# else: | |
# use CogVideoX-5B | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
hidden_states = self.norm_final(hidden_states) | |
hidden_states = hidden_states[:, text_seq_length:] | |
# 5. Final block | |
hidden_states = self.norm_out(hidden_states, temb=emb) | |
hidden_states = self.proj_out(hidden_states) | |
# 6. Unpatchify | |
p = self.config.patch_size | |
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) | |
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
from diffusers.utils import WEIGHTS_NAME | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
if os.path.exists(model_file): | |
state_dict = torch.load(model_file, map_location="cpu") | |
elif os.path.exists(model_file_safetensors): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(model_file_safetensors) | |
else: | |
from safetensors.torch import load_file, safe_open | |
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
state_dict = {} | |
for model_file_safetensors in model_files_safetensors: | |
_state_dict = load_file(model_file_safetensors) | |
for key in _state_dict: | |
state_dict[key] = _state_dict[key] | |
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size(): | |
new_shape = model.state_dict()['patch_embed.proj.weight'].size() | |
if len(new_shape) == 5: | |
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0 | |
else: | |
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]: | |
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight'] | |
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0 | |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] | |
else: | |
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :] | |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] | |
tmp_state_dict = {} | |
for key in state_dict: | |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
tmp_state_dict[key] = state_dict[key] | |
else: | |
print(key, "Size don't match, skip") | |
state_dict = tmp_state_dict | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
print(m) | |
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] | |
print(f"### Mamba Parameters: {sum(params) / 1e6} M") | |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
return model | |
def from_pretrained_cus(cls, pretrained_model_path, subfolder=None, config_path=None, transformer_additional_kwargs={}): | |
if subfolder: | |
config_path = config_path or pretrained_model_path | |
config_file = os.path.join(config_path, subfolder, 'config.json') | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
else: | |
config_file = os.path.join(config_path or pretrained_model_path, 'config.json') | |
print(f"Loading 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
# Check if config file exists | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"Configuration file '{config_file}' does not exist") | |
# Load the configuration | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
from diffusers.utils import WEIGHTS_NAME | |
model = cls.from_config(config, **transformer_additional_kwargs) | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
if os.path.exists(model_file): | |
state_dict = torch.load(model_file, map_location="cpu") | |
elif os.path.exists(model_file_safetensors): | |
from safetensors.torch import load_file | |
state_dict = load_file(model_file_safetensors) | |
else: | |
from safetensors.torch import load_file | |
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
state_dict = {} | |
for model_file_safetensors in model_files_safetensors: | |
_state_dict = load_file(model_file_safetensors) | |
for key in _state_dict: | |
state_dict[key] = _state_dict[key] | |
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size(): | |
new_shape = model.state_dict()['patch_embed.proj.weight'].size() | |
if len(new_shape) == 5: | |
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0 | |
else: | |
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]: | |
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight'] | |
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0 | |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] | |
else: | |
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :] | |
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] | |
tmp_state_dict = {} | |
for key in state_dict: | |
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
tmp_state_dict[key] = state_dict[key] | |
else: | |
print(key, "Size don't match, skip") | |
state_dict = tmp_state_dict | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
print(m) | |
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] | |
print(f"### Mamba Parameters: {sum(params) / 1e6} M") | |
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
return model | |
if __name__ == '__main__': | |
device = "cuda:0" | |
weight_dtype = torch.bfloat16 | |
model_path = "/group/40075/wangboyu/CogVideoX-Fun/CogVideoX-Fun-V1.1-5b-InP" | |
transformer_additional_kwargs={ | |
'is_train_cross': True, | |
'cross_attn_in_channels': 16, | |
'cross_attn_interval': 2, | |
'cross_attn_dim_head' : 128, | |
'cross_attn_num_heads':16, | |
} | |
transformer = CrossTransformer3DModel.from_pretrained_2d( | |
model_path, | |
subfolder="transformer", | |
transformer_additional_kwargs=transformer_additional_kwargs, | |
) | |
transformer.to(device, dtype=weight_dtype) | |
for param in transformer.parameters(): | |
param.requires_grad = False | |
transformer.eval() | |
b = 1 | |
dim = 16 | |
noisy_latents = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype) | |
inpaint_latents = torch.ones(b, 13, dim+1, 60, 90).to(device, dtype=weight_dtype) | |
# cross_latents = torch.ones(b, 13, dim, 60, 90).to(device, dtype=weight_dtype) | |
cross_latents = torch.ones(b, 1, dim, 60, 90).to(device, dtype=weight_dtype) | |
prompt_embeds = torch.ones(b, 226, 4096).to(device, dtype=weight_dtype) | |
image_rotary_emb = (torch.ones(17550, 64).to(device, dtype=weight_dtype), torch.ones(17550, 64).to(device, dtype=weight_dtype)) | |
timesteps = torch.tensor([311]).to(device, dtype=weight_dtype) | |
assert len(timesteps) == b | |
model_output = transformer( | |
hidden_states=noisy_latents, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timesteps, | |
inpaint_latents=inpaint_latents, | |
cross_latents = cross_latents, | |
image_rotary_emb=image_rotary_emb, | |
return_dict=False, | |
)[0] | |
print(model_output) | |