Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import cv2 | |
import PIL | |
from PIL import Image | |
import os | |
from datetime import datetime | |
import pdb | |
import torch.nn.functional as F | |
import numpy as np | |
import os | |
import cv2 | |
import copy | |
from scipy.interpolate import UnivariateSpline, interp1d | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torchvision | |
from tqdm import tqdm | |
from pathlib import Path | |
from typing import Tuple, Optional | |
import cv2 | |
import PIL | |
import numpy | |
import skimage.io | |
import torch | |
import torch.nn.functional as F | |
from decord import VideoReader, cpu | |
def read_video_frames(video_path, process_length, stride, max_res, dataset="open"): | |
if dataset == "open": | |
print("==> processing video: ", video_path) | |
vid = VideoReader(video_path, ctx=cpu(0)) | |
print("==> original video shape: ", (len(vid), *vid.get_batch([0]).shape[1:])) | |
# original_height, original_width = vid.get_batch([0]).shape[1:3] | |
# height = round(original_height / 64) * 64 | |
# width = round(original_width / 64) * 64 | |
# if max(height, width) > max_res: | |
# scale = max_res / max(original_height, original_width) | |
# height = round(original_height * scale / 64) * 64 | |
# width = round(original_width * scale / 64) * 64 | |
#FIXME: hard coded | |
width = 1024 | |
height = 576 | |
vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height) | |
frames_idx = list(range(0, len(vid), stride)) | |
print( | |
f"==> downsampled shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}, with stride: {stride}" | |
) | |
if process_length != -1 and process_length < len(frames_idx): | |
frames_idx = frames_idx[:process_length] | |
print( | |
f"==> final processing shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}" | |
) | |
frames = vid.get_batch(frames_idx).asnumpy().astype("float32") / 255.0 | |
return frames | |
def save_video(data,images_path,folder=None,fps=8): | |
if isinstance(data, np.ndarray): | |
tensor_data = (torch.from_numpy(data) * 255).to(torch.uint8) | |
elif isinstance(data, torch.Tensor): | |
tensor_data = (data.detach().cpu() * 255).to(torch.uint8) | |
elif isinstance(data, list): | |
folder = [folder]*len(data) | |
images = [np.array(Image.open(os.path.join(folder_name,path))) for folder_name,path in zip(folder,data)] | |
stacked_images = np.stack(images, axis=0) | |
tensor_data = torch.from_numpy(stacked_images).to(torch.uint8) | |
torchvision.io.write_video(images_path, tensor_data, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def sphere2pose(c2ws_input, theta, phi, r,device,x=None,y=None): | |
c2ws = copy.deepcopy(c2ws_input) | |
# c2ws[:,2, 3] = c2ws[:,2, 3] - radius | |
#先沿着世界坐标系z轴方向平移再旋转 | |
c2ws[:,2,3] -= r | |
if x is not None: | |
c2ws[:,1,3] += y | |
if y is not None: | |
c2ws[:,0,3] -= x | |
theta = torch.deg2rad(torch.tensor(theta)).to(device) | |
sin_value_x = torch.sin(theta) | |
cos_value_x = torch.cos(theta) | |
rot_mat_x = torch.tensor([[1, 0, 0, 0], | |
[0, cos_value_x, -sin_value_x, 0], | |
[0, sin_value_x, cos_value_x, 0], | |
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device) | |
phi = torch.deg2rad(torch.tensor(phi)).to(device) | |
sin_value_y = torch.sin(phi) | |
cos_value_y = torch.cos(phi) | |
rot_mat_y = torch.tensor([[cos_value_y, 0, sin_value_y, 0], | |
[0, 1, 0, 0], | |
[-sin_value_y, 0, cos_value_y, 0], | |
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device) | |
c2ws = torch.matmul(rot_mat_x,c2ws) | |
c2ws = torch.matmul(rot_mat_y,c2ws) | |
# c2ws[:,2, 3] = c2ws[:,2, 3] + radius | |
return c2ws | |
def generate_traj_specified(c2ws_anchor,theta, phi,d_r,d_x,d_y,frame,device): | |
# Initialize a camera. | |
thetas = np.linspace(0,theta,frame) | |
phis = np.linspace(0,phi,frame) | |
rs = np.linspace(0,d_r,frame) | |
xs = np.linspace(0,d_x,frame) | |
ys = np.linspace(0,d_y,frame) | |
c2ws_list = [] | |
for th, ph, r, x, y in zip(thetas,phis,rs, xs, ys): | |
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device, np.float32(x),np.float32(y)) | |
c2ws_list.append(c2w_new) | |
c2ws = torch.cat(c2ws_list,dim=0) | |
return c2ws | |
def txt_interpolation(input_list,n,mode = 'smooth'): | |
x = np.linspace(0, 1, len(input_list)) | |
if mode == 'smooth': | |
f = UnivariateSpline(x, input_list, k=3) | |
elif mode == 'linear': | |
f = interp1d(x, input_list) | |
else: | |
raise KeyError(f"Invalid txt interpolation mode: {mode}") | |
xnew = np.linspace(0, 1, n) | |
ynew = f(xnew) | |
return ynew | |
def generate_traj_txt(c2ws_anchor,phi, theta, r,frame,device): | |
# Initialize a camera. | |
""" | |
The camera coordinate sysmte in COLMAP is right-down-forward | |
Pytorch3D is left-up-forward | |
""" | |
if len(phi)>3: | |
phis = txt_interpolation(phi,frame,mode='smooth') | |
phis[0] = phi[0] | |
phis[-1] = phi[-1] | |
else: | |
phis = txt_interpolation(phi,frame,mode='linear') | |
if len(theta)>3: | |
thetas = txt_interpolation(theta,frame,mode='smooth') | |
thetas[0] = theta[0] | |
thetas[-1] = theta[-1] | |
else: | |
thetas = txt_interpolation(theta,frame,mode='linear') | |
if len(r) >3: | |
rs = txt_interpolation(r,frame,mode='smooth') | |
rs[0] = r[0] | |
rs[-1] = r[-1] | |
else: | |
rs = txt_interpolation(r,frame,mode='linear') | |
# rs = rs*c2ws_anchor[0,2,3].cpu().numpy() | |
c2ws_list = [] | |
for th, ph, r in zip(thetas,phis,rs): | |
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device) | |
c2ws_list.append(c2w_new) | |
c2ws = torch.cat(c2ws_list,dim=0) | |
return c2ws | |
class Warper: | |
def __init__(self, resolution: tuple = None, device: str = 'gpu0'): | |
self.resolution = resolution | |
self.device = self.get_device(device) | |
self.dtype = torch.float32 | |
return | |
def forward_warp(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, | |
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, | |
intrinsic2: Optional[torch.Tensor], mask=False, twice=False) -> \ | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using | |
bilinear splatting. | |
All arrays should be torch tensors with batch dimension and channel first | |
:param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling | |
bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting() | |
method accordingly. | |
:param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional | |
:param depth1: (b, 1, h, w) | |
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] | |
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] | |
:param intrinsic1: (b, 3, 3) camera intrinsic matrix | |
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional | |
""" | |
if self.resolution is not None: | |
assert frame1.shape[2:4] == self.resolution | |
b, c, h, w = frame1.shape | |
if mask1 is None: | |
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) | |
if intrinsic2 is None: | |
intrinsic2 = intrinsic1.clone() | |
assert frame1.shape == (b, 3, h, w) | |
assert mask1.shape == (b, 1, h, w) | |
assert depth1.shape == (b, 1, h, w) | |
assert transformation1.shape == (b, 4, 4) | |
assert transformation2.shape == (b, 4, 4) | |
assert intrinsic1.shape == (b, 3, 3) | |
assert intrinsic2.shape == (b, 3, 3) | |
frame1 = frame1.to(self.device).to(self.dtype) | |
mask1 = mask1.to(self.device).to(self.dtype) | |
depth1 = depth1.to(self.device).to(self.dtype) | |
transformation1 = transformation1.to(self.device).to(self.dtype) | |
transformation2 = transformation2.to(self.device).to(self.dtype) | |
intrinsic1 = intrinsic1.to(self.device).to(self.dtype) | |
intrinsic2 = intrinsic2.to(self.device).to(self.dtype) | |
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, | |
intrinsic2) | |
trans_coordinates = trans_points1[:,:, :, :2, 0] / trans_points1[:,:, :, 2:3, 0] | |
trans_depth1 = trans_points1[:,:, :, 2, 0] | |
grid = self.create_grid(b, h, w).to(trans_coordinates) | |
flow12 = trans_coordinates.permute(0,3,1,2) - grid | |
if not twice: | |
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=True) | |
if mask: | |
warped_frame2, mask2 = self.clean_points(warped_frame2, mask2) | |
return warped_frame2, mask2, None, flow12 | |
else: | |
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=True) | |
# warped_frame2, mask2 = self.clean_points(warped_frame2, mask2) | |
warped_flow, _ = self.bilinear_splatting(flow12, mask1, trans_depth1, flow12, None, is_image=False) | |
twice_warped_frame1 ,_ = self.bilinear_splatting(warped_frame2, mask2, depth1.squeeze(1), -warped_flow, None, is_image=True) | |
return twice_warped_frame1, warped_frame2, None, None | |
def compute_transformed_points(self, depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor, | |
intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor]): | |
""" | |
Computes transformed position for each pixel location | |
""" | |
if self.resolution is not None: | |
assert depth1.shape[2:4] == self.resolution | |
b, _, h, w = depth1.shape | |
if intrinsic2 is None: | |
intrinsic2 = intrinsic1.clone() | |
transformation = torch.bmm(transformation2, torch.linalg.inv(transformation1)) # (b, 4, 4) | |
x1d = torch.arange(0, w)[None] | |
y1d = torch.arange(0, h)[:, None] | |
x2d = x1d.repeat([h, 1]).to(depth1) # (h, w) | |
y2d = y1d.repeat([1, w]).to(depth1) # (h, w) | |
ones_2d = torch.ones(size=(h, w)).to(depth1) # (h, w) | |
ones_4d = ones_2d[None, :, :, None, None].repeat([b, 1, 1, 1, 1]) # (b, h, w, 1, 1) | |
pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[None, :, :, :, None] # (1, h, w, 3, 1) | |
intrinsic1_inv = torch.linalg.inv(intrinsic1) # (b, 3, 3) | |
intrinsic1_inv_4d = intrinsic1_inv[:, None, None] # (b, 1, 1, 3, 3) | |
intrinsic2_4d = intrinsic2[:, None, None] # (b, 1, 1, 3, 3) | |
depth_4d = depth1[:, 0][:, :, :, None, None] # (b, h, w, 1, 1) | |
trans_4d = transformation[:, None, None] # (b, 1, 1, 4, 4) | |
unnormalized_pos = torch.matmul(intrinsic1_inv_4d, pos_vectors_homo) # (b, h, w, 3, 1) | |
world_points = depth_4d * unnormalized_pos # (b, h, w, 3, 1) | |
world_points_homo = torch.cat([world_points, ones_4d], dim=3) # (b, h, w, 4, 1) | |
trans_world_homo = torch.matmul(trans_4d, world_points_homo) # (b, h, w, 4, 1) | |
trans_world = trans_world_homo[:, :, :, :3] # (b, h, w, 3, 1) | |
trans_norm_points = torch.matmul(intrinsic2_4d, trans_world) # (b, h, w, 3, 1) | |
return trans_norm_points | |
def bilinear_splatting(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, | |
flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \ | |
Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Bilinear splatting | |
:param frame1: (b,c,h,w) | |
:param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional | |
:param depth1: (b,1,h,w) | |
:param flow12: (b,2,h,w) | |
:param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional | |
:param is_image: if true, output will be clipped to (-1,1) range | |
:return: warped_frame2: (b,c,h,w) | |
mask2: (b,1,h,w): 1 for known and 0 for unknown | |
""" | |
if self.resolution is not None: | |
assert frame1.shape[2:4] == self.resolution | |
b, c, h, w = frame1.shape | |
if mask1 is None: | |
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) | |
if flow12_mask is None: | |
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) | |
grid = self.create_grid(b, h, w).to(frame1) | |
trans_pos = flow12 + grid | |
trans_pos_offset = trans_pos + 1 | |
trans_pos_floor = torch.floor(trans_pos_offset).long() | |
trans_pos_ceil = torch.ceil(trans_pos_offset).long() | |
trans_pos_offset = torch.stack([ | |
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_floor = torch.stack([ | |
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1) | |
trans_pos_ceil = torch.stack([ | |
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), | |
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1) | |
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) | |
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ | |
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) | |
sat_depth1 = torch.clamp(depth1, min=0, max=1000) | |
log_depth1 = torch.log(1 + sat_depth1) | |
depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50) | |
weight_nw = torch.moveaxis(prox_weight_nw * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_sw = torch.moveaxis(prox_weight_sw * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_ne = torch.moveaxis(prox_weight_ne * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2]) | |
weight_se = torch.moveaxis(prox_weight_se * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2]) | |
warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to(frame1) | |
warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to(frame1) | |
frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2]) | |
batch_indices = torch.arange(b)[:, None, None].to(frame1.device) | |
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),frame1_cl * weight_nw, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),frame1_cl * weight_sw, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),frame1_cl * weight_ne, accumulate=True) | |
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),frame1_cl * weight_se, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),weight_nw, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),weight_sw, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),weight_ne, accumulate=True) | |
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),weight_se, accumulate=True) | |
warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1]) | |
warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1]) | |
cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1] | |
cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1] | |
mask = cropped_weights > 0 | |
zero_value = -1 if is_image else 0 | |
zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device) | |
warped_frame2 = torch.where(mask, cropped_warped_frame / cropped_weights, zero_tensor) | |
mask2 = mask.to(frame1) | |
if is_image: | |
assert warped_frame2.min() >= -1.1 # Allow for rounding errors | |
assert warped_frame2.max() <= 1.1 | |
warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1) | |
return warped_frame2, mask2 | |
def clean_points(self, warped_frame2, mask2): | |
warped_frame2 = (warped_frame2 + 1.)/2. | |
mask = 1-mask2 | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = mask.squeeze(0).repeat(3,1,1).permute(1,2,0)*255. | |
mask = mask.cpu().numpy() | |
kernel = numpy.ones((5,5), numpy.uint8) | |
mask_erosion = cv2.dilate(numpy.array(mask), kernel, iterations = 1) | |
mask_erosion = PIL.Image.fromarray(numpy.uint8(mask_erosion)) | |
mask_erosion_ = numpy.array(mask_erosion)/255. | |
mask_erosion_[mask_erosion_ < 0.5] = 0 | |
mask_erosion_[mask_erosion_ >= 0.5] = 1 | |
mask_new = torch.from_numpy(mask_erosion_).permute(2,0,1).unsqueeze(0).to(self.device) | |
warped_frame2 = warped_frame2*(1-mask_new) | |
return warped_frame2*2.-1., 1-mask_new[:,0:1,:,:] | |
def create_grid(b, h, w): | |
x_1d = torch.arange(0, w)[None] | |
y_1d = torch.arange(0, h)[:, None] | |
x_2d = x_1d.repeat([h, 1]) | |
y_2d = y_1d.repeat([1, w]) | |
grid = torch.stack([x_2d, y_2d], dim=0) | |
batch_grid = grid[None].repeat([b, 1, 1, 1]) | |
return batch_grid | |
def read_image(path: Path) -> torch.Tensor: | |
image = skimage.io.imread(path.as_posix()) | |
return image | |
def read_depth(path: Path) -> torch.Tensor: | |
if path.suffix == '.png': | |
depth = skimage.io.imread(path.as_posix()) | |
elif path.suffix == '.npy': | |
depth = numpy.load(path.as_posix()) | |
elif path.suffix == '.npz': | |
with numpy.load(path.as_posix()) as depth_data: | |
depth = depth_data['depth'] | |
else: | |
raise RuntimeError(f'Unknown depth format: {path.suffix}') | |
return depth | |
def camera_intrinsic_transform(capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0)): | |
start_y, start_x = patch_start_point | |
camera_intrinsics = numpy.eye(4) | |
camera_intrinsics[0, 0] = 2100 | |
camera_intrinsics[0, 2] = capture_width / 2.0 - start_x | |
camera_intrinsics[1, 1] = 2100 | |
camera_intrinsics[1, 2] = capture_height / 2.0 - start_y | |
return camera_intrinsics | |
def get_device(device: str): | |
""" | |
Returns torch device object | |
:param device: cpu/gpu0/gpu1 | |
:return: | |
""" | |
if device == 'cpu': | |
device = torch.device('cpu') | |
elif device.startswith('gpu') and torch.cuda.is_available(): | |
gpu_num = int(device[3:]) | |
device = torch.device(f'cuda:{gpu_num}') | |
else: | |
device = torch.device('cpu') | |
return device | |