TrajectoryCrafter's picture
update
0f56e8b
import numpy as np
import cv2
import PIL
from PIL import Image
import os
from datetime import datetime
import pdb
import torch.nn.functional as F
import numpy as np
import os
import cv2
import copy
from scipy.interpolate import UnivariateSpline, interp1d
import numpy as np
import PIL.Image
import torch
import torchvision
from tqdm import tqdm
from pathlib import Path
from typing import Tuple, Optional
import cv2
import PIL
import numpy
import skimage.io
import torch
import torch.nn.functional as F
from decord import VideoReader, cpu
def read_video_frames(video_path, process_length, stride, max_res, dataset="open"):
if dataset == "open":
print("==> processing video: ", video_path)
vid = VideoReader(video_path, ctx=cpu(0))
print("==> original video shape: ", (len(vid), *vid.get_batch([0]).shape[1:]))
# original_height, original_width = vid.get_batch([0]).shape[1:3]
# height = round(original_height / 64) * 64
# width = round(original_width / 64) * 64
# if max(height, width) > max_res:
# scale = max_res / max(original_height, original_width)
# height = round(original_height * scale / 64) * 64
# width = round(original_width * scale / 64) * 64
#FIXME: hard coded
width = 1024
height = 576
vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height)
frames_idx = list(range(0, len(vid), stride))
print(
f"==> downsampled shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}, with stride: {stride}"
)
if process_length != -1 and process_length < len(frames_idx):
frames_idx = frames_idx[:process_length]
print(
f"==> final processing shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}"
)
frames = vid.get_batch(frames_idx).asnumpy().astype("float32") / 255.0
return frames
def save_video(data,images_path,folder=None,fps=8):
if isinstance(data, np.ndarray):
tensor_data = (torch.from_numpy(data) * 255).to(torch.uint8)
elif isinstance(data, torch.Tensor):
tensor_data = (data.detach().cpu() * 255).to(torch.uint8)
elif isinstance(data, list):
folder = [folder]*len(data)
images = [np.array(Image.open(os.path.join(folder_name,path))) for folder_name,path in zip(folder,data)]
stacked_images = np.stack(images, axis=0)
tensor_data = torch.from_numpy(stacked_images).to(torch.uint8)
torchvision.io.write_video(images_path, tensor_data, fps=fps, video_codec='h264', options={'crf': '10'})
def sphere2pose(c2ws_input, theta, phi, r,device,x=None,y=None):
c2ws = copy.deepcopy(c2ws_input)
# c2ws[:,2, 3] = c2ws[:,2, 3] - radius
#先沿着世界坐标系z轴方向平移再旋转
c2ws[:,2,3] -= r
if x is not None:
c2ws[:,1,3] += y
if y is not None:
c2ws[:,0,3] -= x
theta = torch.deg2rad(torch.tensor(theta)).to(device)
sin_value_x = torch.sin(theta)
cos_value_x = torch.cos(theta)
rot_mat_x = torch.tensor([[1, 0, 0, 0],
[0, cos_value_x, -sin_value_x, 0],
[0, sin_value_x, cos_value_x, 0],
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
phi = torch.deg2rad(torch.tensor(phi)).to(device)
sin_value_y = torch.sin(phi)
cos_value_y = torch.cos(phi)
rot_mat_y = torch.tensor([[cos_value_y, 0, sin_value_y, 0],
[0, 1, 0, 0],
[-sin_value_y, 0, cos_value_y, 0],
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
c2ws = torch.matmul(rot_mat_x,c2ws)
c2ws = torch.matmul(rot_mat_y,c2ws)
# c2ws[:,2, 3] = c2ws[:,2, 3] + radius
return c2ws
def generate_traj_specified(c2ws_anchor,theta, phi,d_r,d_x,d_y,frame,device):
# Initialize a camera.
thetas = np.linspace(0,theta,frame)
phis = np.linspace(0,phi,frame)
rs = np.linspace(0,d_r,frame)
xs = np.linspace(0,d_x,frame)
ys = np.linspace(0,d_y,frame)
c2ws_list = []
for th, ph, r, x, y in zip(thetas,phis,rs, xs, ys):
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device, np.float32(x),np.float32(y))
c2ws_list.append(c2w_new)
c2ws = torch.cat(c2ws_list,dim=0)
return c2ws
def txt_interpolation(input_list,n,mode = 'smooth'):
x = np.linspace(0, 1, len(input_list))
if mode == 'smooth':
f = UnivariateSpline(x, input_list, k=3)
elif mode == 'linear':
f = interp1d(x, input_list)
else:
raise KeyError(f"Invalid txt interpolation mode: {mode}")
xnew = np.linspace(0, 1, n)
ynew = f(xnew)
return ynew
def generate_traj_txt(c2ws_anchor,phi, theta, r,frame,device):
# Initialize a camera.
"""
The camera coordinate sysmte in COLMAP is right-down-forward
Pytorch3D is left-up-forward
"""
if len(phi)>3:
phis = txt_interpolation(phi,frame,mode='smooth')
phis[0] = phi[0]
phis[-1] = phi[-1]
else:
phis = txt_interpolation(phi,frame,mode='linear')
if len(theta)>3:
thetas = txt_interpolation(theta,frame,mode='smooth')
thetas[0] = theta[0]
thetas[-1] = theta[-1]
else:
thetas = txt_interpolation(theta,frame,mode='linear')
if len(r) >3:
rs = txt_interpolation(r,frame,mode='smooth')
rs[0] = r[0]
rs[-1] = r[-1]
else:
rs = txt_interpolation(r,frame,mode='linear')
# rs = rs*c2ws_anchor[0,2,3].cpu().numpy()
c2ws_list = []
for th, ph, r in zip(thetas,phis,rs):
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device)
c2ws_list.append(c2w_new)
c2ws = torch.cat(c2ws_list,dim=0)
return c2ws
class Warper:
def __init__(self, resolution: tuple = None, device: str = 'gpu0'):
self.resolution = resolution
self.device = self.get_device(device)
self.dtype = torch.float32
return
def forward_warp(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor,
transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor,
intrinsic2: Optional[torch.Tensor], mask=False, twice=False) -> \
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using
bilinear splatting.
All arrays should be torch tensors with batch dimension and channel first
:param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling
bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting()
method accordingly.
:param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional
:param depth1: (b, 1, h, w)
:param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1]
:param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1]
:param intrinsic1: (b, 3, 3) camera intrinsic matrix
:param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional
"""
if self.resolution is not None:
assert frame1.shape[2:4] == self.resolution
b, c, h, w = frame1.shape
if mask1 is None:
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1)
if intrinsic2 is None:
intrinsic2 = intrinsic1.clone()
assert frame1.shape == (b, 3, h, w)
assert mask1.shape == (b, 1, h, w)
assert depth1.shape == (b, 1, h, w)
assert transformation1.shape == (b, 4, 4)
assert transformation2.shape == (b, 4, 4)
assert intrinsic1.shape == (b, 3, 3)
assert intrinsic2.shape == (b, 3, 3)
frame1 = frame1.to(self.device).to(self.dtype)
mask1 = mask1.to(self.device).to(self.dtype)
depth1 = depth1.to(self.device).to(self.dtype)
transformation1 = transformation1.to(self.device).to(self.dtype)
transformation2 = transformation2.to(self.device).to(self.dtype)
intrinsic1 = intrinsic1.to(self.device).to(self.dtype)
intrinsic2 = intrinsic2.to(self.device).to(self.dtype)
trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1,
intrinsic2)
trans_coordinates = trans_points1[:,:, :, :2, 0] / trans_points1[:,:, :, 2:3, 0]
trans_depth1 = trans_points1[:,:, :, 2, 0]
grid = self.create_grid(b, h, w).to(trans_coordinates)
flow12 = trans_coordinates.permute(0,3,1,2) - grid
if not twice:
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=True)
if mask:
warped_frame2, mask2 = self.clean_points(warped_frame2, mask2)
return warped_frame2, mask2, None, flow12
else:
warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=True)
# warped_frame2, mask2 = self.clean_points(warped_frame2, mask2)
warped_flow, _ = self.bilinear_splatting(flow12, mask1, trans_depth1, flow12, None, is_image=False)
twice_warped_frame1 ,_ = self.bilinear_splatting(warped_frame2, mask2, depth1.squeeze(1), -warped_flow, None, is_image=True)
return twice_warped_frame1, warped_frame2, None, None
def compute_transformed_points(self, depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor,
intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor]):
"""
Computes transformed position for each pixel location
"""
if self.resolution is not None:
assert depth1.shape[2:4] == self.resolution
b, _, h, w = depth1.shape
if intrinsic2 is None:
intrinsic2 = intrinsic1.clone()
transformation = torch.bmm(transformation2, torch.linalg.inv(transformation1)) # (b, 4, 4)
x1d = torch.arange(0, w)[None]
y1d = torch.arange(0, h)[:, None]
x2d = x1d.repeat([h, 1]).to(depth1) # (h, w)
y2d = y1d.repeat([1, w]).to(depth1) # (h, w)
ones_2d = torch.ones(size=(h, w)).to(depth1) # (h, w)
ones_4d = ones_2d[None, :, :, None, None].repeat([b, 1, 1, 1, 1]) # (b, h, w, 1, 1)
pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[None, :, :, :, None] # (1, h, w, 3, 1)
intrinsic1_inv = torch.linalg.inv(intrinsic1) # (b, 3, 3)
intrinsic1_inv_4d = intrinsic1_inv[:, None, None] # (b, 1, 1, 3, 3)
intrinsic2_4d = intrinsic2[:, None, None] # (b, 1, 1, 3, 3)
depth_4d = depth1[:, 0][:, :, :, None, None] # (b, h, w, 1, 1)
trans_4d = transformation[:, None, None] # (b, 1, 1, 4, 4)
unnormalized_pos = torch.matmul(intrinsic1_inv_4d, pos_vectors_homo) # (b, h, w, 3, 1)
world_points = depth_4d * unnormalized_pos # (b, h, w, 3, 1)
world_points_homo = torch.cat([world_points, ones_4d], dim=3) # (b, h, w, 4, 1)
trans_world_homo = torch.matmul(trans_4d, world_points_homo) # (b, h, w, 4, 1)
trans_world = trans_world_homo[:, :, :, :3] # (b, h, w, 3, 1)
trans_norm_points = torch.matmul(intrinsic2_4d, trans_world) # (b, h, w, 3, 1)
return trans_norm_points
def bilinear_splatting(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor,
flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \
Tuple[torch.Tensor, torch.Tensor]:
"""
Bilinear splatting
:param frame1: (b,c,h,w)
:param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional
:param depth1: (b,1,h,w)
:param flow12: (b,2,h,w)
:param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional
:param is_image: if true, output will be clipped to (-1,1) range
:return: warped_frame2: (b,c,h,w)
mask2: (b,1,h,w): 1 for known and 0 for unknown
"""
if self.resolution is not None:
assert frame1.shape[2:4] == self.resolution
b, c, h, w = frame1.shape
if mask1 is None:
mask1 = torch.ones(size=(b, 1, h, w)).to(frame1)
if flow12_mask is None:
flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12)
grid = self.create_grid(b, h, w).to(frame1)
trans_pos = flow12 + grid
trans_pos_offset = trans_pos + 1
trans_pos_floor = torch.floor(trans_pos_offset).long()
trans_pos_ceil = torch.ceil(trans_pos_offset).long()
trans_pos_offset = torch.stack([
torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_floor = torch.stack([
torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1)
trans_pos_ceil = torch.stack([
torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1),
torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1)
prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1]))
prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \
(1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1]))
sat_depth1 = torch.clamp(depth1, min=0, max=1000)
log_depth1 = torch.log(1 + sat_depth1)
depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50)
weight_nw = torch.moveaxis(prox_weight_nw * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2])
weight_sw = torch.moveaxis(prox_weight_sw * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2])
weight_ne = torch.moveaxis(prox_weight_ne * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2])
weight_se = torch.moveaxis(prox_weight_se * mask1 * flow12_mask / depth_weights.unsqueeze(1), [0, 1, 2, 3], [0, 3, 1, 2])
warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to(frame1)
warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to(frame1)
frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2])
batch_indices = torch.arange(b)[:, None, None].to(frame1.device)
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),frame1_cl * weight_nw, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),frame1_cl * weight_sw, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),frame1_cl * weight_ne, accumulate=True)
warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),frame1_cl * weight_se, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]),weight_nw, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]),weight_sw, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]),weight_ne, accumulate=True)
warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]),weight_se, accumulate=True)
warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1])
warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1])
cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1]
cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1]
mask = cropped_weights > 0
zero_value = -1 if is_image else 0
zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device)
warped_frame2 = torch.where(mask, cropped_warped_frame / cropped_weights, zero_tensor)
mask2 = mask.to(frame1)
if is_image:
assert warped_frame2.min() >= -1.1 # Allow for rounding errors
assert warped_frame2.max() <= 1.1
warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1)
return warped_frame2, mask2
def clean_points(self, warped_frame2, mask2):
warped_frame2 = (warped_frame2 + 1.)/2.
mask = 1-mask2
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = mask.squeeze(0).repeat(3,1,1).permute(1,2,0)*255.
mask = mask.cpu().numpy()
kernel = numpy.ones((5,5), numpy.uint8)
mask_erosion = cv2.dilate(numpy.array(mask), kernel, iterations = 1)
mask_erosion = PIL.Image.fromarray(numpy.uint8(mask_erosion))
mask_erosion_ = numpy.array(mask_erosion)/255.
mask_erosion_[mask_erosion_ < 0.5] = 0
mask_erosion_[mask_erosion_ >= 0.5] = 1
mask_new = torch.from_numpy(mask_erosion_).permute(2,0,1).unsqueeze(0).to(self.device)
warped_frame2 = warped_frame2*(1-mask_new)
return warped_frame2*2.-1., 1-mask_new[:,0:1,:,:]
@staticmethod
def create_grid(b, h, w):
x_1d = torch.arange(0, w)[None]
y_1d = torch.arange(0, h)[:, None]
x_2d = x_1d.repeat([h, 1])
y_2d = y_1d.repeat([1, w])
grid = torch.stack([x_2d, y_2d], dim=0)
batch_grid = grid[None].repeat([b, 1, 1, 1])
return batch_grid
@staticmethod
def read_image(path: Path) -> torch.Tensor:
image = skimage.io.imread(path.as_posix())
return image
@staticmethod
def read_depth(path: Path) -> torch.Tensor:
if path.suffix == '.png':
depth = skimage.io.imread(path.as_posix())
elif path.suffix == '.npy':
depth = numpy.load(path.as_posix())
elif path.suffix == '.npz':
with numpy.load(path.as_posix()) as depth_data:
depth = depth_data['depth']
else:
raise RuntimeError(f'Unknown depth format: {path.suffix}')
return depth
@staticmethod
def camera_intrinsic_transform(capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0)):
start_y, start_x = patch_start_point
camera_intrinsics = numpy.eye(4)
camera_intrinsics[0, 0] = 2100
camera_intrinsics[0, 2] = capture_width / 2.0 - start_x
camera_intrinsics[1, 1] = 2100
camera_intrinsics[1, 2] = capture_height / 2.0 - start_y
return camera_intrinsics
@staticmethod
def get_device(device: str):
"""
Returns torch device object
:param device: cpu/gpu0/gpu1
:return:
"""
if device == 'cpu':
device = torch.device('cpu')
elif device.startswith('gpu') and torch.cuda.is_available():
gpu_num = int(device[3:])
device = torch.device(f'cuda:{gpu_num}')
else:
device = torch.device('cpu')
return device