from demo import TrajCrafter import os from datetime import datetime import argparse import torch def get_parser(): parser = argparse.ArgumentParser() ## general parser.add_argument('--video_path',type=str, help='Input path') parser.add_argument('--out_dir',type=str,default='./experiments/', help='Output dir') parser.add_argument('--device', type=str, default='cuda:0', help='The device to use') parser.add_argument('--exp_name', type=str, default=None, help='Experiment name, use video file name by default') parser.add_argument('--seed', type=int, default=43, help='Random seed for reproducibility') parser.add_argument('--video_length', type=int, default=49, help='Length of the video frames') parser.add_argument('--fps', type=int, default=10, help='Fps for saved video') parser.add_argument('--stride', type=int, default=1, help='Sampling stride for input video') parser.add_argument('--server_name', type=str, help='Server IP address') ## render parser.add_argument('--radius_scale',type=float,default=1.0 , help='Scale factor for the spherical radius') parser.add_argument('--camera',type=str,default='traj', help='traj or target' ) parser.add_argument('--mode',type=str,default='gradual', help='gradual, bullet or direct' ) parser.add_argument('--mask',action='store_true',default=False, help='Clean the pcd if true' ) parser.add_argument('--traj_txt', type=str, help="Required for 'traj' camera, a txt file that specify camera trajectory") parser.add_argument('--target_pose',nargs=5,type=float, help="Required for 'target' mode, specify target camera pose, " ) parser.add_argument('--near', type=float, default=0.0001, help='Near clipping plane distance') parser.add_argument('--far', type=float, default=10000.0, help='Far clipping plane distance') parser.add_argument('--anchor_idx', type=int, default=0, help='One GT frame') ## diffusion parser.add_argument('--low_gpu_memory_mode', type=bool, default=False, help='Enable low GPU memory mode') # parser.add_argument('--model_name', type=str, default='checkpoints/CogVideoX-Fun-V1.1-5b-InP', help='Path to the model') parser.add_argument('--model_name', type=str, default='alibaba-pai/CogVideoX-Fun-V1.1-5b-InP', help='Path to the model') parser.add_argument('--sampler_name', type=str, choices=["Euler", "Euler A", "DPM++", "PNDM", "DDIM_Cog", "DDIM_Origin"], default='DDIM_Origin', help='Choose the sampler') # parser.add_argument('--transformer_path', type=str, default='checkpoints/TrajectoryCrafter/crosstransformer', help='Path to the pretrained transformer model') parser.add_argument('--transformer_path', type=str, default="TrajectoryCrafter/TrajectoryCrafter", help='Path to the pretrained transformer model') parser.add_argument('--sample_size', type=int, nargs=2, default=[384, 672], help='Sample size as [height, width]') parser.add_argument('--diffusion_guidance_scale', type=float, default=6.0, help='Guidance scale for inference') parser.add_argument('--diffusion_inference_steps', type=int, default=50, help='Number of inference steps') parser.add_argument('--prompt', type=str, default=None, help='Prompt for video generation') parser.add_argument('--negative_prompt', type=str, default="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.", help='Negative prompt for video generation') parser.add_argument('--refine_prompt', type=str, default=". The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", help='Prompt for video generation') parser.add_argument('--blip_path',type=str,default="Salesforce/blip2-opt-2.7b") ## depth # parser.add_argument('--unet_path', type=str, default='checkpoints/DepthCrafter', help='Path to the UNet model') parser.add_argument('--unet_path', type=str, default="tencent/DepthCrafter", help='Path to the UNet model') parser.add_argument('--pre_train_path_vda', type=str, default='checkpoints/video_depth_anything_vitl.pth', help='Path to the pre-trained model') # parser.add_argument('--pre_train_path', type=str, default='checkpoints/stable-video-diffusion-img2vid-xt', help='Path to the pre-trained model') parser.add_argument('--pre_train_path', type=str, default="stabilityai/stable-video-diffusion-img2vid-xt", help='Path to the pre-trained model') parser.add_argument('--cpu_offload', type=str, default='model', help='CPU offload strategy') parser.add_argument('--depth_inference_steps', type=int, default=5, help='Number of inference steps') parser.add_argument('--depth_guidance_scale', type=float, default=1.0, help='Guidance scale for inference') parser.add_argument('--window_size', type=int, default=110, help='Window size for processing') parser.add_argument('--overlap', type=int, default=25, help='Overlap size for processing') parser.add_argument('--max_res', type=int, default=1024, help='Maximum resolution for processing') return parser if __name__=="__main__": parser = get_parser() # infer config.py opts = parser.parse_args() opts.weight_dtype = torch.bfloat16 if opts.exp_name == None: prefix = datetime.now().strftime("%Y%m%d_%H%M") opts.exp_name = f'{prefix}_{os.path.splitext(os.path.basename(opts.video_path))[0]}' opts.save_dir = os.path.join(opts.out_dir,opts.exp_name) os.makedirs(opts.save_dir,exist_ok=True) pvd = TrajCrafter(opts) if opts.mode == 'gradual': pvd.infer_gradual(opts) elif opts.mode == 'direct': pvd.infer_direct(opts) elif opts.mode == 'bullet': pvd.infer_bullet(opts)