File size: 12,754 Bytes
33fe5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import torch
import sys
# import spaces #fixme

import random
import gradio as gr
import random
from configs.infer_config import get_parser
from huggingface_hub import hf_hub_download

traj_examples = [
    ['0 40', '0 0', '0 0'],
    ['0 -35', '0 0', '0 -0.1'],
    ['0 -3 -15 -20 -17 -5 0', '0 -2 -5 -10 -8 -5 0 2 5 3 0', '0 0'],
    ['0 3 10 20 17 10 0', '0 -2 -8 -6 0 2 5 3 0', '0 -0.02 -0.09 -0.16 -0.09 0'],
    ['0 30', '0 -1 -5 -4 0 1 5 4 0', '0 -0.2'],
]

img_examples = [
    ['test/images/boy.png',0,1],
    ['test/images/car.jpeg',5,1],
    ['test/images/fruit.jpg',5,1],
    ['test/images/room.png',10,1],
    ['test/images/castle.png',-4,1],
]

max_seed = 2 ** 31

def download_model():
    REPO_ID = 'Drexubery/ViewCrafter_25'
    filename_list = ['model.ckpt']
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/', force_download=True)
    
# download_model() #fixme
parser = get_parser() # infer_config.py
opts = parser.parse_args() # default device: 'cuda:0'
tmp = str(random.randint(10**(5-1), 10**5 - 1))
opts.save_dir = f'./{tmp}'
os.makedirs(opts.save_dir,exist_ok=True)
test_tensor = torch.Tensor([0]).cuda()
opts.device = str(test_tensor.device)
# opts.config = './configs/inference_pvd_1024_gradio.yaml' #fixme
opts.config = './configs/inference_pvd_1024_local.yaml' #fixme

# # install pytorch3d # fixme
# pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
# version_str="".join([
#     f"py3{sys.version_info.minor}_cu",
#     torch.version.cuda.replace(".",""),
#     f"_pyt{pyt_version_str}"
# ])
# print(version_str)
# os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
# os.system("mkdir -p checkpoints/ && wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/")
# print(f'>>> System info: {version_str}')


from viewcrafter import ViewCrafter


CAMERA_MOTION_MODE = ["Basic Camera Trajectory", "Custom Camera Trajectory"]

def proceed(mode):
    if mode == "Basic Camera Trajectory":
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)



def viewcrafter_demo(opts):
    css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px} #random_button {max-width: 100px !important}"""
    image2video = ViewCrafter(opts, gradio = True)
    # image2video.run_traj_basic = spaces.GPU(image2video.run_traj_basic, duration=50) # fixme
    # image2video.run_traj = spaces.GPU(image2video.run_traj, duration=50) # fixme
    # image2video.run_gen = spaces.GPU(image2video.run_gen, duration=260) # fixme
    with gr.Blocks(analytics_enabled=False, css=css) as viewcrafter_iface:
        gr.Markdown("<div align='center'> <h1> ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis </span> </h1> \
                      <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                        <a href='https://scholar.google.com/citations?user=UOE8-qsAAAAJ&hl=zh-CN'>Wangbo Yu</a>, \
                        <a href='https://doubiiu.github.io/'>Jinbo Xing</a>, <a href=''>Li Yuan</a>, \
                        <a href='https://wbhu.github.io/'>Wenbo Hu</a>, <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>,\
                        <a href=''>Zhipeng Huang</a>, <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en/'>Xiangjun Gao</a>,\
                        <a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html/'>Tien-Tsin Wong</a>,\
                        <a href='https://scholar.google.com/citations?hl=en&user=4oXBp9UAAAAJ&view_op=list_works&sortby=pubdate/'>Ying Shan</a>\
                        <a href=''>Yonghong Tian</a>\
                    </h2> \
                     <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2409.02048'> [ArXiv] </a>\
                     <a style='font-size:18px;color: #000000' href='https://drexubery.github.io/ViewCrafter/'> [Project Page] </a>\
                     <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Drexubery/ViewCrafter'> [Github] </a>\
                     <a style='font-size:18px;color: #000000' href='https://www.youtube.com/watch?v=WGIEmu9eXmU'> [Video] </a> </div>")


        with gr.Column():
            # # step 0: tutorial
            # gr.Markdown("## Step 0: Read tutorial", show_label=False)
            # gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>Please refer to the tutorial <a href='https://github.com/Drexubery/ViewCrafter/blob/main/docs/gradio_tutorial.md' target='_blank'>here</a> for best practice, which includes the cameara system defination and the renderer parameters.</div>")

            # step 2: input an image
            gr.Markdown("---\n## Step 1: Input an Image, selet an elevation angle and a center_scale factor", show_label=False, visible=True)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>1. Estimate an elevation angle  that represents the angle at which the image was taken; a value bigger than 0 indicates a top-down view, and it doesn't need to be precise. <br>2. The origin of the world coordinate system is by default defined at the point cloud corresponding to the center pixel of the input image. You can adjust the position of the origin by modifying center_scale; a value smaller than 1 brings the origin closer to you.</div>")
            with gr.Row(equal_height=True):
                with gr.Column(scale=2):
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_elevation = gr.Slider(minimum=-45, maximum=45, step=1, elem_id="elevation", label="elevation", value=5)
                        i2v_center_scale = gr.Slider(minimum=0.1, maximum=2, step=0.1, elem_id="i2v_center_scale", label="center_scale", value=1)
            gr.Examples(examples=img_examples,
                        inputs=[i2v_input_image,i2v_elevation,i2v_center_scale],
                        examples_per_page=6
            )

            # step 2 - camera trajectory generation
            gr.Markdown("---\n## Step 2: Input camera trajectory", show_label=False, visible=True)
            gr.Markdown(f"\n - {CAMERA_MOTION_MODE[0]}: Select from 6 basic camera trajectory \
                                        \n - {CAMERA_MOTION_MODE[1]}: Customize complex camera trajectory yourself \
                                        \n - Click `Proceed` to go into next step", 
                                        show_label=False, visible=True)
            with gr.Row():
                camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera trajectory mode", interactive=True, visible=True)
                pro_btn = gr.Button("Proceed")
            
            with  gr.Column(visible=False) as ouput1:
                gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> Select one cameras trajectory. </div>")
                with gr.Row():
                    with gr.Column():
                        left = gr.Button(value = "Left")
                        right = gr.Button(value = "Right")
                        up = gr.Button(value = "Up")
                        down = gr.Button(value = "Down")
                        zoomin = gr.Button(value = "Zoom in")
                        zoomout = gr.Button(value = "Zoom out")
                   
                    with gr.Column():
                        i2v_traj_video1 = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)          

                    
            with gr.Column(visible=False) as ouput2:
                gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> Input a d_phi sequence, a d_theta sequence, and a d_r sequence to generate a camera trajectory. In the sequences, a positive d_phi moves the camera to the right, a negative d_theta moves the camera up, and a negative d_r moves the camera forward. Ensure that each sequence starts with 0 and contains at least two elements (a start and an end). If you upload a new image, remember to conduct this step again. </div>")
                with gr.Row():
                    with gr.Column():
                        # camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera Motion Control Mode", interactive=True, visible=False)
                        i2v_d_phi2 = gr.Text(label='d_phi sequence')
                        i2v_d_theta2 = gr.Text(label='d_theta sequence')
                        i2v_d_r2 = gr.Text(label='d_r sequence')
                        i2v_traj_btn2 = gr.Button("Generate custom trajectory")
                        # camera_info = gr.Button(value="Proceed", visible=False)      
                    with gr.Column():
                        i2v_traj_video2 = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)          
                with gr.Column():
                    gr.Examples(examples=traj_examples,
                                inputs=[i2v_d_phi2, i2v_d_theta2, i2v_d_r2],
                    )


            # with gr.Column():
            #     i2v_traj_btn = gr.Button("Generate trajectory")
            #     i2v_traj_video = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)  

            # step 3 - Generate video
            gr.Markdown("---\n## Step 3: Generate video", show_label=False, visible=True)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> You can reduce the sampling steps for faster inference; try different random seed if the result is not satisfying. </div>")
            with gr.Row():
                with gr.Column():
                    i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
                    i2v_seed = gr.Slider(label='Random seed', minimum=0, maximum=max_seed, step=1, value=0)
                    i2v_end_btn = gr.Button("Generate video")
                    # with gr.Tab(label='Result'):
                with gr.Column():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)


        pro_btn.click(inputs=[camera_mode],
                      outputs=[ouput1,ouput2],
                      fn = proceed
                      )


        i2v_traj_btn2.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi2, i2v_d_theta2, i2v_d_r2],
                        outputs=[i2v_traj_video2],
                        fn = image2video.run_traj
        )


        left.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,left],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )

        right.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,right],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )
        up.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,up],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )

        down.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,down],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )
        zoomin.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,zoomin],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )

        zoomout.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale,zoomout],
                        outputs=[i2v_traj_video1],
                        fn = image2video.run_traj_basic
        )
        
        i2v_end_btn.click(inputs=[i2v_steps, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = image2video.run_gen
        )

    return viewcrafter_iface


viewcrafter_iface = viewcrafter_demo(opts)
viewcrafter_iface.queue(max_size=10)
# viewcrafter_iface.launch() #fixme
viewcrafter_iface.launch(server_name='11.220.92.96', server_port=80, max_threads=10,debug=True)