Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 SparkAudio & DragonLineageAI
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import torch
|
| 17 |
+
import soundfile as sf
|
| 18 |
+
import logging
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import platform
|
| 21 |
+
import numpy as np
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
from datetime import datetime
|
| 24 |
+
import tempfile # To handle temporary audio files for Gradio
|
| 25 |
+
|
| 26 |
+
# --- Import Transformers ---
|
| 27 |
+
from transformers import AutoProcessor, AutoModel
|
| 28 |
+
|
| 29 |
+
# --- Configuration ---
|
| 30 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 31 |
+
|
| 32 |
+
model_id = "DragonLineageAI/Vi-Spark-TTS-0.5B-v2"
|
| 33 |
+
cache_dir = "model_cache" # Define a cache directory within the Space
|
| 34 |
+
|
| 35 |
+
# Mapping from Gradio Slider (1-5) to model's expected string values
|
| 36 |
+
# Adjust these strings if the model expects different ones (e.g., "slow", "fast")
|
| 37 |
+
LEVELS_MAP_UI = {
|
| 38 |
+
1: "very_low", # Or "slowest" / "lowest"
|
| 39 |
+
2: "low", # Or "slow" / "low"
|
| 40 |
+
3: "moderate", # Or "normal" / "medium"
|
| 41 |
+
4: "high", # Or "fast" / "high"
|
| 42 |
+
5: "very_high" # Or "fastest" / "highest"
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
# --- Model Loading ---
|
| 46 |
+
def load_model_and_processor(model_id, cache_dir):
|
| 47 |
+
"""Loads the Processor and Model using Transformers."""
|
| 48 |
+
logging.info(f"Loading processor from: {model_id}")
|
| 49 |
+
try:
|
| 50 |
+
processor = AutoProcessor.from_pretrained(
|
| 51 |
+
model_id,
|
| 52 |
+
trust_remote_code=True,
|
| 53 |
+
# token=api_key, # Use token only if necessary and ideally from secrets
|
| 54 |
+
cache_dir=cache_dir
|
| 55 |
+
)
|
| 56 |
+
logging.info("Processor loaded successfully.")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logging.error(f"Error loading processor: {e}")
|
| 59 |
+
raise
|
| 60 |
+
|
| 61 |
+
logging.info(f"Loading model from: {model_id}")
|
| 62 |
+
try:
|
| 63 |
+
model = AutoModel.from_pretrained(
|
| 64 |
+
model_id,
|
| 65 |
+
trust_remote_code=True,
|
| 66 |
+
cache_dir=cache_dir,
|
| 67 |
+
# torch_dtype=torch.float16 # Optional: uncomment for potential speedup/memory saving if supported
|
| 68 |
+
)
|
| 69 |
+
model.eval() # Set model to evaluation mode
|
| 70 |
+
logging.info("Model loaded successfully.")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logging.error(f"Error loading model: {e}")
|
| 73 |
+
raise
|
| 74 |
+
|
| 75 |
+
# --- Link Model to Processor ---
|
| 76 |
+
# THIS STEP IS CRUCIAL
|
| 77 |
+
processor.model = model
|
| 78 |
+
logging.info("Model reference set in processor.")
|
| 79 |
+
|
| 80 |
+
# Sync sampling rate if necessary
|
| 81 |
+
if hasattr(model.config, 'sample_rate') and processor.sampling_rate != model.config.sample_rate:
|
| 82 |
+
logging.warning(f"Processor SR ({processor.sampling_rate}) != Model Config SR ({model.config.sample_rate}). Updating processor.")
|
| 83 |
+
processor.sampling_rate = model.config.sample_rate
|
| 84 |
+
|
| 85 |
+
# --- Device Selection ---
|
| 86 |
+
if torch.cuda.is_available():
|
| 87 |
+
device = torch.device("cuda")
|
| 88 |
+
elif platform.system() == "Darwin" and torch.backends.mps.is_available():
|
| 89 |
+
# Check for MPS availability specifically
|
| 90 |
+
device = torch.device("mps")
|
| 91 |
+
else:
|
| 92 |
+
device = torch.device("cpu")
|
| 93 |
+
|
| 94 |
+
logging.info(f"Selected device: {device}")
|
| 95 |
+
model.to(device)
|
| 96 |
+
logging.info(f"Model moved to device: {device}")
|
| 97 |
+
|
| 98 |
+
return processor, model, device
|
| 99 |
+
|
| 100 |
+
# --- Load Model Globally (once per Space instance) ---
|
| 101 |
+
try:
|
| 102 |
+
processor, model, device = load_model_and_processor(model_id, cache_dir)
|
| 103 |
+
MODEL_LOADED = True
|
| 104 |
+
except Exception as e:
|
| 105 |
+
MODEL_LOADED = False
|
| 106 |
+
logging.error(f"Failed to load model/processor: {e}")
|
| 107 |
+
# You might want to display an error in the Gradio UI if loading fails
|
| 108 |
+
|
| 109 |
+
# --- Core TTS Functions ---
|
| 110 |
+
|
| 111 |
+
def run_voice_clone_tts(
|
| 112 |
+
text,
|
| 113 |
+
prompt_speech_path,
|
| 114 |
+
prompt_text,
|
| 115 |
+
processor,
|
| 116 |
+
model,
|
| 117 |
+
device,
|
| 118 |
+
):
|
| 119 |
+
"""Performs voice cloning TTS using Transformers."""
|
| 120 |
+
if not MODEL_LOADED:
|
| 121 |
+
return None, "Error: Model not loaded."
|
| 122 |
+
if not text:
|
| 123 |
+
return None, "Error: Please provide text to synthesize."
|
| 124 |
+
if not prompt_speech_path:
|
| 125 |
+
return None, "Error: Please provide a prompt audio file (upload or record)."
|
| 126 |
+
|
| 127 |
+
logging.info("Starting voice cloning inference...")
|
| 128 |
+
logging.info(f"Inputs - Text: '{text}', Prompt Audio: {prompt_speech_path}, Prompt Text: '{prompt_text}'")
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
# Ensure prompt_text is None if empty/short, otherwise use it
|
| 132 |
+
prompt_text_clean = None if not prompt_text or len(prompt_text.strip()) < 2 else prompt_text.strip()
|
| 133 |
+
|
| 134 |
+
# 1. Preprocess using Processor
|
| 135 |
+
inputs = processor(
|
| 136 |
+
text=text,
|
| 137 |
+
prompt_speech_path=prompt_speech_path,
|
| 138 |
+
prompt_text=prompt_text_clean,
|
| 139 |
+
return_tensors="pt"
|
| 140 |
+
).to(device) # Move processor output to model device
|
| 141 |
+
|
| 142 |
+
# Store prompt global tokens if present (important for decoding)
|
| 143 |
+
global_tokens_prompt = inputs.pop("global_token_ids_prompt", None)
|
| 144 |
+
if global_tokens_prompt is None:
|
| 145 |
+
logging.warning("global_token_ids_prompt not found in processor output. Decoding might be affected.")
|
| 146 |
+
|
| 147 |
+
# 2. Generate using Model
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
# Use generate parameters consistent with the original pipeline/model card
|
| 150 |
+
# Adjust max_new_tokens based on expected output length vs input length
|
| 151 |
+
# A fixed large value might be okay, or calculate dynamically if needed.
|
| 152 |
+
output_ids = model.generate(
|
| 153 |
+
**inputs,
|
| 154 |
+
max_new_tokens=3000, # Safeguard, might need adjustment
|
| 155 |
+
do_sample=True,
|
| 156 |
+
temperature=0.8,
|
| 157 |
+
top_k=50,
|
| 158 |
+
top_p=0.95,
|
| 159 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 160 |
+
pad_token_id=processor.tokenizer.pad_token_id # Use EOS if PAD is None
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# 3. Decode using Processor
|
| 164 |
+
output_clone = processor.decode(
|
| 165 |
+
generated_ids=output_ids,
|
| 166 |
+
global_token_ids_prompt=global_tokens_prompt,
|
| 167 |
+
input_ids_len=inputs["input_ids"].shape[-1] # Pass prompt length
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Save audio to a temporary file for Gradio
|
| 171 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
| 172 |
+
sf.write(tmpfile.name, output_clone["audio"], output_clone["sampling_rate"])
|
| 173 |
+
output_path = tmpfile.name
|
| 174 |
+
|
| 175 |
+
logging.info(f"Voice cloning successful. Audio saved temporarily at: {output_path}")
|
| 176 |
+
return output_path, None # Return path and no error message
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
logging.error(f"Error during voice cloning inference: {e}", exc_info=True)
|
| 180 |
+
return None, f"Error during generation: {e}"
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def run_voice_creation_tts(
|
| 184 |
+
text,
|
| 185 |
+
gender,
|
| 186 |
+
pitch_level, # Expecting 1-5
|
| 187 |
+
speed_level, # Expecting 1-5
|
| 188 |
+
processor,
|
| 189 |
+
model,
|
| 190 |
+
device,
|
| 191 |
+
):
|
| 192 |
+
"""Performs voice creation TTS using Transformers."""
|
| 193 |
+
if not MODEL_LOADED:
|
| 194 |
+
return None, "Error: Model not loaded."
|
| 195 |
+
if not text:
|
| 196 |
+
return None, "Error: Please provide text to synthesize."
|
| 197 |
+
|
| 198 |
+
# Map numeric levels to string representations
|
| 199 |
+
pitch_str = LEVELS_MAP_UI.get(pitch_level, "moderate") # Default to moderate if invalid
|
| 200 |
+
speed_str = LEVELS_MAP_UI.get(speed_level, "moderate") # Default to moderate if invalid
|
| 201 |
+
|
| 202 |
+
logging.info("Starting voice creation inference...")
|
| 203 |
+
logging.info(f"Inputs - Text: '{text}', Gender: {gender}, Pitch: {pitch_str} (Level {pitch_level}), Speed: {speed_str} (Level {speed_level})")
|
| 204 |
+
|
| 205 |
+
try:
|
| 206 |
+
# 1. Preprocess
|
| 207 |
+
inputs = processor(
|
| 208 |
+
text=text,
|
| 209 |
+
# prompt_speech_path=None, # No audio prompt for creation
|
| 210 |
+
# prompt_text=None, # No text prompt for creation
|
| 211 |
+
gender=gender,
|
| 212 |
+
pitch=pitch_str,
|
| 213 |
+
speed=speed_str,
|
| 214 |
+
return_tensors="pt"
|
| 215 |
+
).to(device)
|
| 216 |
+
|
| 217 |
+
# 2. Generate
|
| 218 |
+
with torch.no_grad():
|
| 219 |
+
output_ids = model.generate(
|
| 220 |
+
**inputs,
|
| 221 |
+
max_new_tokens=3000, # Safeguard
|
| 222 |
+
do_sample=True,
|
| 223 |
+
temperature=0.8,
|
| 224 |
+
top_k=50,
|
| 225 |
+
top_p=0.95,
|
| 226 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 227 |
+
pad_token_id=processor.tokenizer.pad_token_id
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# 3. Decode (no prompt global tokens needed here)
|
| 231 |
+
output_create = processor.decode(
|
| 232 |
+
generated_ids=output_ids,
|
| 233 |
+
input_ids_len=inputs["input_ids"].shape[-1] # Pass prompt length
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Save audio to a temporary file for Gradio
|
| 237 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
| 238 |
+
sf.write(tmpfile.name, output_create["audio"], output_create["sampling_rate"])
|
| 239 |
+
output_path = tmpfile.name
|
| 240 |
+
|
| 241 |
+
logging.info(f"Voice creation successful. Audio saved temporarily at: {output_path}")
|
| 242 |
+
return output_path, None # Return path and no error message
|
| 243 |
+
|
| 244 |
+
except Exception as e:
|
| 245 |
+
logging.error(f"Error during voice creation inference: {e}", exc_info=True)
|
| 246 |
+
return None, f"Error during generation: {e}"
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
# --- Gradio UI ---
|
| 250 |
+
def build_ui():
|
| 251 |
+
with gr.Blocks() as demo:
|
| 252 |
+
gr.HTML('<h1 style="text-align: center;">Spark-TTS Demo (Transformers)</h1>') # Changed title slightly
|
| 253 |
+
gr.Markdown(
|
| 254 |
+
"Powered by [DragonLineageAI/Vi-Spark-TTS-0.5B-v2](https://huggingface.co/DragonLineageAI/Vi-Spark-TTS-0.5B-v2). "
|
| 255 |
+
"Choose a tab for Voice Cloning or Voice Creation."
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
if not MODEL_LOADED:
|
| 259 |
+
gr.Markdown("## ⚠️ Error: Model failed to load. Please check the Space logs.")
|
| 260 |
+
|
| 261 |
+
with gr.Tabs():
|
| 262 |
+
# --- Voice Clone Tab ---
|
| 263 |
+
with gr.TabItem("Voice Clone"):
|
| 264 |
+
gr.Markdown(
|
| 265 |
+
"### Upload Reference Audio or Record"
|
| 266 |
+
)
|
| 267 |
+
gr.Markdown(
|
| 268 |
+
"Provide a short audio clip (5-20 seconds) of the voice you want to clone. "
|
| 269 |
+
"Optionally, provide the transcript of that audio for better results, especially if the language is the same as the text you want to synthesize."
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
with gr.Row():
|
| 273 |
+
prompt_wav_upload = gr.Audio(
|
| 274 |
+
sources=["upload"],
|
| 275 |
+
type="filepath",
|
| 276 |
+
label="Upload Prompt Audio File (WAV/MP3)",
|
| 277 |
+
)
|
| 278 |
+
prompt_wav_record = gr.Audio(
|
| 279 |
+
sources=["microphone"],
|
| 280 |
+
type="filepath",
|
| 281 |
+
label="Or Record Prompt Audio",
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Row():
|
| 285 |
+
text_input_clone = gr.Textbox(
|
| 286 |
+
label="Text to Synthesize",
|
| 287 |
+
lines=4,
|
| 288 |
+
placeholder="Enter text here..."
|
| 289 |
+
)
|
| 290 |
+
prompt_text_input = gr.Textbox(
|
| 291 |
+
label="Text of Prompt Speech (Optional)",
|
| 292 |
+
lines=2,
|
| 293 |
+
placeholder="Enter the transcript of the prompt audio (if available).",
|
| 294 |
+
info="Recommended for cloning in the same language." # Added info here
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
audio_output_clone = gr.Audio(
|
| 298 |
+
label="Generated Audio",
|
| 299 |
+
autoplay=False,
|
| 300 |
+
)
|
| 301 |
+
status_clone = gr.Textbox(label="Status", interactive=False) # For status/error messages
|
| 302 |
+
|
| 303 |
+
generate_button_clone = gr.Button("Generate Cloned Voice", variant="primary", interactive=MODEL_LOADED)
|
| 304 |
+
|
| 305 |
+
def voice_clone_callback(text, prompt_text, audio_upload, audio_record):
|
| 306 |
+
# Prioritize uploaded file, fallback to recorded file
|
| 307 |
+
prompt_speech = audio_upload if audio_upload else audio_record
|
| 308 |
+
if not prompt_speech:
|
| 309 |
+
# Return None for the audio component and the error message for the status component
|
| 310 |
+
return None, "Error: Please upload or record a reference audio."
|
| 311 |
+
|
| 312 |
+
# Call the core TTS function
|
| 313 |
+
output_path, error_msg = run_voice_clone_tts(
|
| 314 |
+
text,
|
| 315 |
+
prompt_speech,
|
| 316 |
+
prompt_text,
|
| 317 |
+
processor,
|
| 318 |
+
model,
|
| 319 |
+
device
|
| 320 |
+
)
|
| 321 |
+
if error_msg:
|
| 322 |
+
return None, error_msg # Return error message to status_clone
|
| 323 |
+
else:
|
| 324 |
+
# Return the audio file path and a success message (or empty)
|
| 325 |
+
return output_path, "Audio generated successfully!"
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
generate_button_clone.click(
|
| 329 |
+
voice_clone_callback,
|
| 330 |
+
inputs=[
|
| 331 |
+
text_input_clone,
|
| 332 |
+
prompt_text_input,
|
| 333 |
+
prompt_wav_upload,
|
| 334 |
+
prompt_wav_record,
|
| 335 |
+
],
|
| 336 |
+
outputs=[audio_output_clone, status_clone], # Update both audio and status
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Examples need actual audio files in an 'examples' directory in your Space repo
|
| 340 |
+
# Make sure 'examples/sample_prompt.wav' exists or change the path
|
| 341 |
+
gr.Examples(
|
| 342 |
+
examples=[
|
| 343 |
+
["Hello, this is a test of voice cloning.", "I am a sample reference voice.", "examples/sample_prompt.wav", None],
|
| 344 |
+
["You can experiment with different voices and texts.", None, None, "examples/sample_record.wav"], # Assuming a recorded sample exists
|
| 345 |
+
["The quality of the clone depends on the reference audio.", "This is the reference text.", "examples/another_prompt.wav", None]
|
| 346 |
+
],
|
| 347 |
+
inputs=[text_input_clone, prompt_text_input, prompt_wav_upload, prompt_wav_record],
|
| 348 |
+
outputs=[audio_output_clone, status_clone],
|
| 349 |
+
fn=voice_clone_callback,
|
| 350 |
+
cache_examples=False, # Disable caching if examples might change or for demos
|
| 351 |
+
label="Clone Examples"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
# --- Voice Creation Tab ---
|
| 356 |
+
with gr.TabItem("Voice Creation"):
|
| 357 |
+
gr.Markdown(
|
| 358 |
+
"### Create Your Own Voice Based on the Following Parameters"
|
| 359 |
+
)
|
| 360 |
+
gr.Markdown(
|
| 361 |
+
"Select gender, adjust pitch and speed to generate a new synthetic voice."
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
with gr.Row():
|
| 365 |
+
with gr.Column(scale=1):
|
| 366 |
+
gender = gr.Radio(
|
| 367 |
+
choices=["male", "female"], value="female", label="Gender"
|
| 368 |
+
)
|
| 369 |
+
pitch = gr.Slider(
|
| 370 |
+
minimum=1, maximum=5, step=1, value=3, label="Pitch (1=Lowest, 5=Highest)"
|
| 371 |
+
)
|
| 372 |
+
speed = gr.Slider(
|
| 373 |
+
minimum=1, maximum=5, step=1, value=3, label="Speed (1=Slowest, 5=Fastest)"
|
| 374 |
+
)
|
| 375 |
+
with gr.Column(scale=2):
|
| 376 |
+
text_input_creation = gr.Textbox(
|
| 377 |
+
label="Text to Synthesize",
|
| 378 |
+
lines=5,
|
| 379 |
+
placeholder="Enter text here...",
|
| 380 |
+
value="You can generate a customized voice by adjusting parameters such as pitch and speed.",
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
audio_output_creation = gr.Audio(
|
| 384 |
+
label="Generated Audio",
|
| 385 |
+
autoplay=False,
|
| 386 |
+
)
|
| 387 |
+
status_create = gr.Textbox(label="Status", interactive=False) # For status/error messages
|
| 388 |
+
|
| 389 |
+
create_button = gr.Button("Create New Voice", variant="primary", interactive=MODEL_LOADED)
|
| 390 |
+
|
| 391 |
+
def voice_creation_callback(text, gender, pitch_val, speed_val):
|
| 392 |
+
# Call the core TTS function
|
| 393 |
+
output_path, error_msg = run_voice_creation_tts(
|
| 394 |
+
text,
|
| 395 |
+
gender,
|
| 396 |
+
int(pitch_val), # Convert slider value to int
|
| 397 |
+
int(speed_val), # Convert slider value to int
|
| 398 |
+
processor,
|
| 399 |
+
model,
|
| 400 |
+
device
|
| 401 |
+
)
|
| 402 |
+
if error_msg:
|
| 403 |
+
return None, error_msg
|
| 404 |
+
else:
|
| 405 |
+
return output_path, "Audio generated successfully!"
|
| 406 |
+
|
| 407 |
+
create_button.click(
|
| 408 |
+
voice_creation_callback,
|
| 409 |
+
inputs=[text_input_creation, gender, pitch, speed],
|
| 410 |
+
outputs=[audio_output_creation, status_create],
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
gr.Examples(
|
| 414 |
+
examples=[
|
| 415 |
+
["This is a female voice with average pitch and speed.", "female", 3, 3],
|
| 416 |
+
["This is a male voice, speaking quickly with a slightly higher pitch.", "male", 4, 4],
|
| 417 |
+
["A deep and slow female voice.", "female", 1, 2],
|
| 418 |
+
["A very high-pitched and fast male voice.", "male", 5, 5]
|
| 419 |
+
],
|
| 420 |
+
inputs=[text_input_creation, gender, pitch, speed],
|
| 421 |
+
outputs=[audio_output_creation, status_create],
|
| 422 |
+
fn=voice_creation_callback,
|
| 423 |
+
cache_examples=False,
|
| 424 |
+
label="Creation Examples"
|
| 425 |
+
)
|
| 426 |
+
return demo
|
| 427 |
+
|
| 428 |
+
# --- Launch the Gradio App ---
|
| 429 |
+
if __name__ == "__main__":
|
| 430 |
+
demo = build_ui()
|
| 431 |
+
demo.launch()
|