DrishtiSharma's picture
Update app.py
9e516eb verified
# add support for multiple pdf/pdf urls + audio query + generate qa audio
# include - key features of the app + limitations + future work + workflow diagram + sample outputs
#
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
import chromadb
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
from langgraph.graph import StateGraph, START, END, add_messages
from langgraph.constants import Send
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, SystemMessage, AnyMessage
from pydantic import BaseModel
from typing import List, Annotated, Any
import re, operator
chromadb.api.client.SharedSystemClient.clear_system_cache()
class MultiAgentState(BaseModel):
state: List[str] = []
messages: Annotated[list[AnyMessage], add_messages]
topic: List[str] = []
context: List[str] = []
sub_topic_list: List[str] = []
sub_topics: Annotated[list[AnyMessage], add_messages]
stories: Annotated[list[AnyMessage], add_messages]
stories_lst: Annotated[list, operator.add]
class StoryState(BaseModel):
retrieved_docs: List[Any] = []
reranked_docs: List[str] = []
stories: Annotated[list[AnyMessage], add_messages]
story_topic: str = ""
stories_lst: Annotated[list, operator.add]
class DocumentRAG:
def __init__(self, embedding_choice="OpenAI"):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY")
self.init_time = datetime.now(pytz.UTC)
self.embedding_choice = embedding_choice
# Set up appropriate LLM
if self.embedding_choice == "Cohere":
from langchain_cohere import ChatCohere
import cohere
self.llm = ChatCohere(
model="command-r-plus-08-2024",
temperature=0.7,
cohere_api_key=os.getenv("COHERE_API_KEY")
)
self.cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))
else:
self.llm = ChatOpenAI(
model_name="gpt-4",
temperature=0.7,
api_key=self.api_key
)
# Persistent directory for Chroma
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def _get_embedding_model(self):
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
if self.embedding_choice == "OpenAI":
return OpenAIEmbeddings(api_key=self.api_key)
else:
from langchain.embeddings import CohereEmbeddings
return CohereEmbeddings(
model="embed-multilingual-light-v3.0",
cohere_api_key=os.getenv("COHERE_API_KEY")
)
def process_documents(self, uploaded_files):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(
delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = self._get_embedding_model()
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a summary of the provided text focusing on specific sections in the specified language."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
Summarize the following document focusing mainly on these sections:
1. Abstract
2. In the Introduction, specifically focus on the portion where the key contributions of the research paper are highlighted.
3. Conclusion
4. Limitations
5. Future Work
Ensure the summary is concise, logically ordered, and suitable for {language}.
Provide 7-9 key points for discussion in a structured format."""},
{"role": "user", "content": text[:4000]}
],
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def create_podcast(self, language):
"""Generate a podcast script and audio based on doc summary in the specified language."""
if not self.document_summary:
return "Please process documents before generating a podcast.", None
if not self.api_key:
return "Please set the OpenAI API key in the environment variables.", None
try:
client = OpenAI(api_key=self.api_key)
# Generate podcast script
script_response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
You are a professional podcast producer. Create a 1-2 minute structured podcast dialogue in {language}
based on the provided document summary. Follow this flow:
1. Brief Introduction of the Topic
2. Highlight the limitations of existing methods, the key contributions of the research paper, and its advantages over the current state of the art.
3. Discuss Limitations of the research work.
4. Present the Conclusion
5. Mention Future Work
Clearly label the dialogue as 'Host 1:' and 'Host 2:'. Maintain a tone that is engaging, conversational,
and insightful, while ensuring the flow remains logical and natural. Include a well-structured opening
to introduce the topic and a clear, thoughtful closing that provides a smooth conclusion, avoiding any
abrupt endings."""
},
{"role": "user", "content": f"""
Document Summary: {self.document_summary}"""}
],
temperature=0.7
)
script = script_response.choices[0].message.content
if not script:
return "Error: Failed to generate podcast script.", None
# Convert script to audio
final_audio = AudioSegment.empty()
is_first_speaker = True
lines = [line.strip() for line in script.split("\n") if line.strip()]
for line in lines:
if ":" not in line:
continue
speaker, text = line.split(":", 1)
if not text.strip():
continue
try:
voice = "nova" if is_first_speaker else "onyx"
audio_response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text.strip()
)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_response.stream_to_file(temp_audio_file.name)
segment = AudioSegment.from_file(temp_audio_file.name)
final_audio += segment
final_audio += AudioSegment.silent(duration=300)
is_first_speaker = not is_first_speaker
except Exception as e:
print(f"Error generating audio for line: {text}")
print(f"Details: {e}")
continue
if len(final_audio) == 0:
return "Error: No audio could be generated.", None
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
final_audio.export(output_file, format="mp3")
return script, output_file
except Exception as e:
return f"Error generating podcast: {str(e)}", None
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = (
f"Instruction: Respond in {language}. Be professional and concise, "
f"keeping the response under 300 words. If you cannot provide an answer, say: "
f'"I am not sure about this question. Please try asking something else."'
)
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
def extract_subtopics(self, messages):
text = "\n".join([msg.content for msg in messages])
return re.findall(r'- \*\*(.*?)\*\*', text)
def beginner_topic(self, state: MultiAgentState):
prompt = f"What are the beginner-level topics you can learn about {', '.join(state.topic)} in {', '.join(state.context)}?"
msg = self.llm.invoke([SystemMessage("Suppose you're a middle grader..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def middle_topic(self, state: MultiAgentState):
prompt = f"What are the middle-level topics for {', '.join(state.topic)} in {', '.join(state.context)}? Avoid previous."
msg = self.llm.invoke([SystemMessage("Suppose you're a college student..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def advanced_topic(self, state: MultiAgentState):
prompt = f"What are the advanced-level topics for {', '.join(state.topic)} in {', '.join(state.context)}? Avoid previous."
msg = self.llm.invoke([SystemMessage("Suppose you're a teacher..."), HumanMessage(prompt)])
return {"message": msg, "sub_topics": msg}
def topic_extractor(self, state: MultiAgentState):
return {"sub_topic_list": self.extract_subtopics(state.sub_topics)}
def retrieve_node(self, state: StoryState):
embedding = self._get_embedding_model()
retriever = Chroma(
persist_directory=self.chroma_persist_dir,
embedding_function=embedding
).as_retriever(search_kwargs={"k": 20})
topic = state.story_topic
query = f"information about {topic}"
docs = retriever.get_relevant_documents(query)
return {"retrieved_docs": docs, "question": query}
def rerank_node(self, state: StoryState):
topic = state.story_topic
query = f"Rerank documents based on how well they explain the topic {topic}"
docs = state.retrieved_docs
texts = [doc.page_content for doc in docs]
if not texts:
return {"reranked_docs": [], "question": query}
if self.embedding_choice == "Cohere" and hasattr(self, "cohere_client"):
rerank_results = self.cohere_client.rerank(
query=query,
documents=texts,
top_n=5,
model="rerank-v3.5"
)
top_docs = [texts[result.index] for result in rerank_results.results]
else:
top_docs = sorted(texts, key=lambda t: -len(t))[:5]
return {"reranked_docs": top_docs, "question": query}
def generate_story_node(self, state: StoryState):
context = "\n\n".join(state.reranked_docs)
topic = state.story_topic
system_message = f"""
Suppose you're a brilliant science storyteller.
You write stories that help middle schoolers understand complex science topics with fun and clarity.
Add subtle humor and make it engaging.
"""
prompt = f"""
Use the following context to write a fun and simple story explaining **{topic}** to a middle schooler:\n
Context:\n{context}\n\n
Story:
"""
msg = self.llm.invoke([SystemMessage(system_message), HumanMessage(prompt)])
return {"stories": msg}
def run_multiagent_storygraph(self, topic: str, context: str):
if self.embedding_choice == "OpenAI":
self.llm = ChatOpenAI(model_name="gpt-4", temperature=0.7, api_key=self.api_key)
elif self.embedding_choice == "Cohere":
from langchain_cohere import ChatCohere
self.llm = ChatCohere(
model="command-r-plus-08-2024",
temperature=0.7,
cohere_api_key=os.getenv("COHERE_API_KEY")
)
# Define the story subgraph with reranking
story_graph = StateGraph(StoryState)
story_graph.add_node("Retrieve", self.retrieve_node)
story_graph.add_node("Rerank", self.rerank_node)
story_graph.add_node("Generate", self.generate_story_node)
story_graph.set_entry_point("Retrieve")
story_graph.add_edge("Retrieve", "Rerank")
story_graph.add_edge("Rerank", "Generate")
story_graph.set_finish_point("Generate")
story_subgraph = story_graph.compile()
# Define the main graph
graph = StateGraph(MultiAgentState)
graph.add_node("beginner_topic", self.beginner_topic)
graph.add_node("middle_topic", self.middle_topic)
graph.add_node("advanced_topic", self.advanced_topic)
graph.add_node("topic_extractor", self.topic_extractor)
graph.add_node("story_generator", story_subgraph)
graph.add_edge(START, "beginner_topic")
graph.add_edge("beginner_topic", "middle_topic")
graph.add_edge("middle_topic", "advanced_topic")
graph.add_edge("advanced_topic", "topic_extractor")
graph.add_conditional_edges(
"topic_extractor",
lambda state: [Send("story_generator", {"story_topic": t}) for t in state.sub_topic_list],
["story_generator"]
)
graph.add_edge("story_generator", END)
compiled = graph.compile(checkpointer=MemorySaver())
thread = {"configurable": {"thread_id": "storygraph-session"}}
# Initial invocation
result = compiled.invoke({"topic": [topic], "context": [context]}, thread)
# Fallback if no subtopics found
if not result.get("sub_topic_list"):
fallback_subs = ["Neural Networks", "Reinforcement Learning", "Supervised vs Unsupervised"]
compiled.update_state(thread, {"sub_topic_list": fallback_subs})
result = compiled.invoke(None, thread, stream_mode="values")
return result
# Sidebar
with st.sidebar:
st.title("About")
st.markdown(
"""
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
It allows users to upload documents, generate summaries, ask questions, and create podcasts.
"""
)
st.markdown("### Steps:")
st.markdown("1. Upload documents.")
st.markdown("2. Generate summary.")
st.markdown("3. Ask questions.")
st.markdown("4. Create podcast.")
st.markdown("### Credits:")
st.markdown("Image Source: [Geeksforgeeks](https://www.geeksforgeeks.org/how-to-convert-document-into-podcast/)")
# Streamlit UI
st.title("Document Analyzer & Podcast Generator")
st.image("./cover_image.png", use_container_width=True)
# Embedding model selector (main screen)
st.subheader("Embedding Model Selection")
embedding_choice = st.radio(
"Choose the embedding model for document processing and story generation:",
["OpenAI", "Cohere"],
horizontal=True,
key="embedding_model"
)
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
elif st.session_state.rag_system.embedding_choice != embedding_choice:
st.session_state.rag_system = DocumentRAG(embedding_choice=embedding_choice)
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summary
st.subheader("Step 2: Generate Summary")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
"",
summary_language_options,
horizontal=True,
key="summary_language"
)
if st.button("Generate Summary"):
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
with st.spinner("Generating summary, please wait..."):
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
if summary:
st.session_state.rag_system.document_summary = summary
st.text_area("Document Summary", summary, height=200)
st.success("Summary generated successfully!")
else:
st.error("Failed to generate summary.")
else:
st.info("Please process documents first to generate summary.")
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")
# Step 4: Multi-Agent Story Explorer
st.subheader("Step 5: Explore Subtopics via Multi-Agent Graph")
story_topic = st.text_input("Enter main topic:", value="Machine Learning")
story_context = st.text_input("Enter learning context:", value="Education")
if st.button("Run Story Graph"):
with st.spinner("Generating subtopics and stories..."):
result = st.session_state.rag_system.run_multiagent_storygraph(topic=story_topic, context=story_context)
subtopics = result.get("sub_topic_list", [])
st.markdown("### 🧠 Extracted Subtopics")
for sub in subtopics:
st.markdown(f"- {sub}")
stories = result.get("stories", [])
if stories:
st.markdown("### πŸ“š Generated Stories")
for i, story in enumerate(stories):
st.markdown(f"**Story {i+1}:**")
st.markdown(story.content)
else:
st.warning("No stories were generated.")
# Step 5: Generate Podcast
st.subheader("Step 4: Generate Podcast")
st.write("Select Podcast Language:")
podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
podcast_language = st.radio(
"",
podcast_language_options,
horizontal=True,
key="podcast_language"
)
if st.session_state.rag_system.document_summary:
if st.button("Generate Podcast"):
with st.spinner("Generating podcast, please wait..."):
script, audio_path = st.session_state.rag_system.create_podcast(podcast_language)
if audio_path:
st.text_area("Generated Podcast Script", script, height=200)
st.audio(audio_path, format="audio/mp3")
st.success("Podcast generated successfully! You can listen to it above.")
else:
st.error(script)
else:
st.info("Please process documents and generate summary before creating a podcast.")