Dusduo commited on
Commit
df23474
·
1 Parent(s): fbfd3a3

1st version of the app

Browse files
Files changed (1) hide show
  1. app.py +186 -2
app.py CHANGED
@@ -1,4 +1,188 @@
 
1
  import streamlit as st
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #importing the libraries
2
  import streamlit as st
3
+ from PIL import Image
4
+ import torch
5
+ from transformers import AutoModelForImageClassification, AutoImageProcessor
6
+ import numpy as np
7
+ import pandas as pd
8
+ import time
9
+ import os
10
 
11
+ model_repository_id = "Dusduo/Pokemon-classification-1stGen"
12
+ # Loading the pokemon classifier model and its processor
13
+ image_processor = AutoImageProcessor.from_pretrained(model_repository_id)
14
+ model = AutoModelForImageClassification.from_pretrained(model_repository_id)
15
+ # Loading the pokemon information table
16
+ pokemon_info_df = pd.read_csv('pokemon_info.csv')
17
+
18
+ pokeball_image = Image.open('pokeball.png').resize((20,20))
19
+
20
+ #functions to predict image
21
+ def preprocess(processor: AutoImageProcessor, image):
22
+ return processor(image.convert("RGB").resize((200,200)), return_tensors="pt")
23
+
24
+ def predict(model: AutoModelForImageClassification, inputs, k=5):
25
+
26
+ # Forward the image to the model and retrieve the logits
27
+ with torch.no_grad():
28
+ logits = model(**inputs).logits
29
+
30
+ # Convert the retrieved logits into a vector of probabilities for each class
31
+ probabilities = torch.softmax(logits[0], dim=0).tolist()
32
+
33
+ # Discriminate wether or not the inputted image was an image of a Pokemon
34
+ # Compute the variance of the vector of probabilities
35
+ # The spread of the probability values is a good represent of the confusion of the model
36
+ # Or in other words, its confidence => the greater the spread, the lower its confidence
37
+ variance = np.var(probabilities)
38
+
39
+ # Too great of a spread: it is likely the image provided did not correspond to any known classes
40
+ if variance < 0.001: #not a pokemon
41
+ predicted_label = 'not a pokemon'
42
+ probability = -1
43
+ (top_k_labels, top_k_probability) = '_', '_'
44
+ else: # it is a pokemon
45
+ # Retrieve the predicted class (pokemon)
46
+ predicted_id = logits.argmax(-1).item()
47
+ predicted_label = model.config.id2label[predicted_id]
48
+ # Retrieve the probability for the predicted class, and format it to 2 decimals
49
+ probability = round(probabilities[predicted_id]*100,2)
50
+ # Retrieve the top 5 classes and their probabilities
51
+ #top_k_labels = [model.config.id2label[key] for key in np.argpartition(logits.numpy(), -k)[-k:]]
52
+ #top_k_probability = [round(prob*100,2) for prob in np.sort(probabilities.numpy())[-k:]]
53
+
54
+ return predicted_label, probability #, (top_k_labels, top_k_probability)
55
+
56
+
57
+
58
+ # Designing the interface ------------------------------------------
59
+
60
+ # Use the full page instead of a narrow central column
61
+ st.set_page_config(layout="wide")
62
+
63
+ # Define the title
64
+ st.title("Gotta Classify 'Em All - 1st Generation Pokedex -")
65
+ # For newline
66
+ st.write('\n')
67
+
68
+ image = Image.open('anime1.jpeg')
69
+
70
+ col1, col2 = st.columns([3,1]) # [3,1]
71
+
72
+ with col1:
73
+ image = Image.open('anime1.jpeg')
74
+ show = st.image(image, use_column_width=True)
75
+
76
+
77
+
78
+ # Display Sample images ----
79
+ st.subheader('Sample images')
80
+
81
+ sample_imgs_dir = "sample_imgs/"
82
+ sample_imgs = os.listdir(sample_imgs_dir) # get the list of all sample images
83
+ img_idx = 0
84
+
85
+ n_cols = 4
86
+ groups = []
87
+ for i in range(0, len(sample_imgs), n_cols):
88
+ groups.append(sample_imgs[i:i+n_cols])
89
+
90
+ for group in groups:
91
+ cols = st.columns(n_cols)
92
+ for i,image_file in enumerate(group):
93
+ cols[i].image(sample_imgs_dir+image_file)
94
+
95
+
96
+
97
+ # Sidebar work and model outputs ---------------
98
+
99
+ st.sidebar.title("Upload Image")
100
+
101
+ #Disabling warning
102
+ #st.set_option('deprecation.showfileUploaderEncoding', False)
103
+ #Choose your own image
104
+ uploaded_file = st.sidebar.file_uploader("",type=['png', 'jpg', 'jpeg'], accept_multiple_files=False )
105
+
106
+ if uploaded_file is not None:
107
+
108
+ u_img = Image.open(uploaded_file)
109
+ show.image(u_img, 'Uploaded Image', width=400 )#use_column_width=True)
110
+
111
+ # Preprocess the image for the model
112
+ model_inputs = preprocess(image_processor, u_img)
113
+
114
+ # For newline
115
+ st.sidebar.write('\n')
116
+
117
+ if st.sidebar.button("Click Here to Classify"):
118
+
119
+ if uploaded_file is None:
120
+
121
+ st.sidebar.write("Please upload an Image to Classify")
122
+
123
+ else:
124
+
125
+ with st.spinner('Classifying ...'):
126
+ # Get prediction
127
+ prediction, probability = predict(model, model_inputs,5) #, (top_k_labels, top_k_probability)
128
+ time.sleep(2)
129
+ st.sidebar.success('Done!')
130
+
131
+ st.sidebar.header("Model predicts: ")
132
+
133
+ # Display prediction
134
+
135
+ if probability==-1:
136
+
137
+ st.sidebar.write("It seems like it is not a picture of a 1st Generation Pokemon alone.", '\n',
138
+ "There might be too many entities on the image." )
139
+
140
+ else:
141
+ st.sidebar.write(f" It's a(n) {prediction} picture.",'\n')
142
+
143
+ st.sidebar.write('Probability:',probability,'%')
144
+
145
+ # Retrieve predicted pokemon information
146
+ _, pokedex_number, english_name, romaji_name, katakana_name, weight_kg, height_m, type1, type2, color1, color2, classification, evolve_from, evolve_into, is_legendary = pokemon_info_df[pokemon_info_df['name']==prediction].values[0]
147
+ with col2:
148
+ # pokedex box
149
+ with st.container(border=True ):
150
+ # first row
151
+ with st.container():
152
+ pokeball_image_col,pokedex_number_col, pokemon_name_col = st.columns([1,1,8])
153
+ pokeball_image_col.image(pokeball_image)
154
+ pokedex_number_col.markdown(f'<div style="text-align: left; font-size: 1.4rem;"><b>{pokedex_number}</b></div>', unsafe_allow_html=True)
155
+ pokemon_name_col.markdown(f'<div style="text-align: right; font-size: 1.4rem;"><b>{english_name}</b></div>', unsafe_allow_html=True)
156
+
157
+ # second row
158
+ with st.container():
159
+ st.markdown(f'<div style="text-align: center; color: {color1}; font-size: 1.2rem;"><b>{classification}</b></div>', unsafe_allow_html=True)
160
+
161
+ # 3rd row
162
+ with st.container():
163
+ if pd.isna(type2):
164
+ st.write('\n')
165
+ st.markdown(f'<div style="display: flex; justify-content: center; align-items: center; "><div style="display: inline-block; padding: 5px; margin: 0 5px; border-radius: 5px; background-color: {color1}; color: white;">{type1}</div>', unsafe_allow_html=True)
166
+ else:
167
+ type1_col, type2_col = st.columns(2)
168
+ type1_col.markdown(f'<div style="display: flex; justify-content: center; align-items: center;"><div style="display: inline-block; padding: 5px; margin: 0 5px; border-radius: 5px; background-color: {color1}; color: white;">{type1}</div>', unsafe_allow_html=True)
169
+ type2_col.markdown(f'<div style="display: flex; justify-content: center; align-items: center;"><div style="display: inline-block; padding: 5px; margin: 0 5px; border-radius: 5px; background-color: {color2}; color: white;">{type2}</div>', unsafe_allow_html=True)
170
+ st.write('\n')
171
+ # 4th row
172
+ with st.container():
173
+ st.write(f'<div style=font-size: 1.4rem;><b>Height:</b> {height_m}m', unsafe_allow_html=True)
174
+ st.write('\n')
175
+ st.write(f'<div style=font-size: 1.4rem;><b>Weight:</b> {weight_kg}kg', unsafe_allow_html=True)
176
+ st.write('\n')
177
+ if not pd.isna(evolve_from):
178
+ st.markdown(f'<div style=font-size: 1.4rem;><b>Evolves from:</b> {evolve_from}', unsafe_allow_html=True)
179
+ #st.write(f'Evolves from: {evolve_from}')
180
+ st.write('\n')
181
+ if not pd.isna(evolve_into):
182
+ st.markdown(f'<div style=font-size: 1.4rem;><b>Evolves into:</b> {evolve_into}', unsafe_allow_html=True)
183
+ #st.write(f'Evolves into: {evolve_into}')
184
+ st.write('\n')
185
+
186
+
187
+
188
+