import json import random import pickle import numpy as np import re from flask import Flask, request, jsonify from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity # import os # os.environ['HF_HOME'] = '/tmp/huggingface' # os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface/transformers' # os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets' # os.environ['HF_METRICS_CACHE'] = '/tmp/huggingface/metrics' class ImprovedBPJSChatbot: def __init__(self): self.load_models() self.load_intents() def load_models(self): """Load semua model yang diperlukan""" print("Memuat model dan konfigurasi...") # Load konfigurasi with open('model_config.pkl', 'rb') as f: config = pickle.load(f) # Load sentence transformer self.st_model = SentenceTransformer("Dyna-99/local-st-model") self.preprocessing_enabled = config['preprocessing_enabled'] # Load classifier with open('svm_model.pkl', 'rb') as f: self.clf = pickle.load(f) # Load label encoder with open('label_encoder.pkl', 'rb') as f: self.label_encoder = pickle.load(f) print("Semua model berhasil dimuat!") def load_intents(self): """Load data intents untuk responses""" with open('intents.json', 'r', encoding='utf-8') as f: self.intents_data = json.load(f) self.tag_responses = {intent['tag']: intent['responses'] for intent in self.intents_data['intents']} # Buat embeddings untuk semua patterns (untuk similarity fallback) self.pattern_embeddings = [] self.pattern_tags = [] for intent in self.intents_data['intents']: for pattern in intent['patterns']: processed_pattern = self.preprocess_text(pattern) if self.preprocessing_enabled else pattern embedding = self.st_model.encode(processed_pattern) self.pattern_embeddings.append(embedding) self.pattern_tags.append(intent['tag']) self.pattern_embeddings = np.array(self.pattern_embeddings) def preprocess_text(self, text): """Preprocessing teks yang sama dengan training""" text = text.lower() # Normalisasi singkatan text = re.sub(r'\bjkk\b', 'jaminan kecelakaan kerja', text) text = re.sub(r'\bjkm\b', 'jaminan kematian', text) text = re.sub(r'\bjht\b', 'jaminan hari tua', text) text = re.sub(r'\bjp\b', 'jaminan pensiun', text) text = re.sub(r'\bbpjs\b', 'bpjs ketenagakerjaan', text) # Hapus karakter khusus text = re.sub(r'[^\w\s]', ' ', text) text = re.sub(r'\s+', ' ', text).strip() return text def get_prediction_confidence(self, msg_embedding): """Dapatkan prediksi dengan confidence score""" # Prediksi probabilitas probabilities = self.clf.predict_proba(msg_embedding)[0] max_prob = np.max(probabilities) predicted_class = np.argmax(probabilities) predicted_tag = self.label_encoder.inverse_transform([predicted_class])[0] return predicted_tag, max_prob def similarity_fallback(self, msg_embedding, threshold=0.7): """Fallback menggunakan cosine similarity""" similarities = cosine_similarity(msg_embedding, self.pattern_embeddings)[0] max_similarity_idx = np.argmax(similarities) max_similarity = similarities[max_similarity_idx] if max_similarity >= threshold: return self.pattern_tags[max_similarity_idx], max_similarity return 'fallback', max_similarity def get_contextual_response(self, tag, user_message): """Pilih response yang paling kontekstual""" responses = self.tag_responses.get(tag, self.tag_responses['fallback']) # Jika hanya ada satu response, return langsung if len(responses) == 1: return responses[0] # Pilih response berdasarkan kata kunci dalam pesan user user_words = set(user_message.lower().split()) best_response = responses[0] best_score = 0 for response in responses: response_words = set(response.lower().split()) # Hitung kesamaan kata common_words = user_words.intersection(response_words) score = len(common_words) if score > best_score: best_score = score best_response = response # Jika tidak ada yang cocok, pilih random if best_score == 0: return random.choice(responses) return best_response def generate_response(self, message): """Generate response dengan multiple strategies""" if not message.strip(): return "Tolong kirim sebuah pesan." # Preprocessing processed_msg = self.preprocess_text(message) if self.preprocessing_enabled else message msg_embedding = self.st_model.encode(processed_msg).reshape(1, -1) # Strategy 1: SVM prediction dengan confidence predicted_tag, confidence = self.get_prediction_confidence(msg_embedding) # Strategy 2: Similarity fallback jika confidence rendah if confidence < 0.6: # Threshold bisa di-adjust fallback_tag, similarity = self.similarity_fallback(msg_embedding) if similarity > confidence: predicted_tag = fallback_tag # Strategy 3: Contextual response selection response = self.get_contextual_response(predicted_tag, message) # Logging untuk debugging print(f"Input: {message}") print(f"Processed: {processed_msg}") print(f"Predicted tag: {predicted_tag} (confidence: {confidence:.3f})") return response # Inisialisasi chatbot chatbot = ImprovedBPJSChatbot() # Flask app app = Flask(__name__) @app.route('/chat', methods=['POST']) def chat(): try: msg = request.json.get("message", "").strip() response = chatbot.generate_response(msg) return jsonify({"reply": response}) except Exception as e: print(f"Error: {e}") return jsonify({"reply": "Maaf, terjadi kesalahan sistem. Silakan coba lagi."}) @app.route('/health', methods=['GET']) def health(): return jsonify({"status": "healthy", "model": "BPJS Chatbot Improved"}) if __name__ == '__main__': app.run(host='0.0.0.0',port=7860, debug=False) #ganti dari 5000 ke 7860