FlexTok / app.py
roman-bachmann's picture
Update app.py
a53bced verified
from typing import List
import os
import spaces
import gradio as gr
import random
from PIL import Image
import matplotlib.pyplot as plt
import einops
import numpy as np
import torch
from torchvision import transforms
import torchvision.transforms.functional as TF
from flextok.flextok_wrapper import FlexTokFromHub
from flextok.utils.demo import imgs_from_urls, denormalize, batch_to_pil
from flextok.utils.misc import detect_bf16_support, get_bf16_context, get_generator
# We recommend running this demo on an A100 GPU
if torch.cuda.is_available():
device = "cuda"
gpu_type = torch.cuda.get_device_name(torch.cuda.current_device())
power_device = f"{gpu_type}"
torch.cuda.max_memory_allocated(device=device)
# Detect if bf16 is enabled or not
enable_bf16 = detect_bf16_support()
print(f'Device: {device}, GPU type: {gpu_type}')
print('BF16 enabled:', enable_bf16)
else:
# Currently not supported. Please run on GPUs.
device, power_device, enable_bf16 = "cpu", "CPU", False
print('Running on CPU')
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
# Global no_grad
torch.set_grad_enabled(False)
K_KEEP_LIST = [1, 2, 4, 8, 16, 32, 64, 128, 256]
MAX_SEED = np.iinfo(np.int32).max
MODEL_ID = 'EPFL-VILAB/flextok_d18_d28_dfn'
MODEL_NAME = 'FlexTok d18-d28 (DFN)'
# Load FlexTok model from HF Hub
flextok_model = FlexTokFromHub.from_pretrained(MODEL_ID).to(device).eval()
# Disable flex_attention for HF Space
flextok_model.encoder.module_dict.enc_seq_packer.return_materialized_mask = True
flextok_model.decoder.module_dict.dec_seq_packer.return_materialized_mask = True
for block in flextok_model.encoder.module_dict.enc_transformer.blocks:
block._checkpoint_wrapped_module.attn.use_flex_attention = False
for block in flextok_model.decoder.module_dict.dec_transformer.blocks:
block._checkpoint_wrapped_module.attn.use_flex_attention = False
# Load AuraSR model from HF Hub
try:
from aura_sr import AuraSR
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")
except:
aura_sr = None
def img_from_path(
path: str,
img_size: int = 256,
mean: List[float] = [0.5, 0.5, 0.5],
std: List[float] = [0.5, 0.5, 0.5],
) -> torch.Tensor:
# Image loading helper function
img_pil = Image.open(path).convert("RGB")
transform = transforms.Compose(
[
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
]
)
return transform(img_pil).unsqueeze(0)
@spaces.GPU(duration=30)
def infer(img_path, seed=1000, randomize_seed=False, timesteps=25, cfg_scale=7.5, perform_norm_guidance=True, super_res=False):
if randomize_seed:
seed = None
imgs = img_from_path(img_path).to(device)
# Tokenize images once
with get_bf16_context(enable_bf16):
tokens = flextok_model.tokenize(imgs)[0] # 1x256
# Create all token subsequences
subseq_list = [tokens[:,:k_keep].clone() for k_keep in K_KEEP_LIST] # [1x1, 1x2, 1x4, ..., 1x256]
# Detokenize various subsequences in parallel. Batch size is 9.
with get_bf16_context(enable_bf16):
generator = get_generator(seed=seed, device=device)
all_reconst = flextok_model.detokenize(
subseq_list, timesteps=timesteps,
guidance_scale=cfg_scale, perform_norm_guidance=perform_norm_guidance,
generator=generator, verbose=False,
)
# Transform to PIL images
all_images = [
(
TF.to_pil_image(denormalize(reconst_k).clamp(0,1)),
'1 token (2 bytes)' if k_keep == 1 else f'{k_keep} tokens ({2*k_keep} bytes)'
)
for reconst_k, k_keep in zip(all_reconst, K_KEEP_LIST)
]
if super_res:
all_images = [(aura_sr.upscale_4x(img), label) for img, label in all_images]
return all_images
examples = [
'examples/0.png', 'examples/1.png', 'examples/2.png',
'examples/3.png', 'examples/4.png', 'examples/5.png',
]
css="""
#col-container {
margin: 0 auto;
max-width: 1500px;
}
#col-input-container {
margin: 0 auto;
max-width: 400px;
}
#run-button {
margin: 0 auto;
}
#gallery {
aspect-ratio: 1/1 !important;
height: auto !important;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FlexTok: Resampling Images into 1D Token Sequences of Flexible Length
""")
with gr.Row():
with gr.Column(elem_id="col-input-container"):
gr.Markdown(f"""
[`Website`](https://flextok.epfl.ch) | [`arXiv`](https://arxiv.org/abs/2502.13967) | [`GitHub`](https://github.com/apple/ml-flextok)
Research demo for: <br>
[**FlexTok: Resampling Images into 1D Token Sequences of Flexible Length**](https://arxiv.org/abs/2502.13967), arXiv 2025 <br>
This demo uses the FlexTok tokenizer to autoencode the given RGB input, using [{MODEL_ID}](https://huggingface.co/{MODEL_ID}), running on *{power_device}*.
The FlexTok encoder produces a 1D sequence of discrete tokens that are ordered in a coarse-to-fine manner.
We show reconstructions from truncated subsequences, using the first 1, 2, 4, 8, ..., 256 tokens.
As you will see, the first tokens capture more high-level semantic content, while subsequent ones add fine-grained detail.
""")
img_path = gr.Image(label='RGB input image', type='filepath')
run_button = gr.Button(f"Autoencode with {MODEL_NAME}", scale=0, elem_id="run-button")
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown(f"""
The FlexTok decoder is a rectified flow model. The following settings control the seed of the initial noise, the number of denoising timesteps,
the guidance scale, and whether to perform [Adaptive Projected Guidance](https://arxiv.org/abs/2410.02416) (we recommend enabling it).
This FlexTok model operates at 256x256 resolution. You can optionally super-resolve the reconstructions to 1024x1024 using
[Aura-SR](https://huggingface.co/fal/AuraSR) for sharper details, whithout changing the underlying reconstructed image too much.
""")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=1000)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
timesteps = gr.Slider(label="Denoising timesteps", minimum=1, maximum=1000, step=1, value=25)
cfg_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=15.0, step=0.1, value=7.5)
perform_norm_guidance = gr.Checkbox(label="Perform Adaptive Projected Guidance", value=True)
super_res = gr.Checkbox(label="Super-resolve reconstructions from 256x256 to 1024x1024 with Aura-SR", value=False)
result = gr.Gallery(
label="Reconstructions", show_label=True, elem_id="gallery", type='pil',
columns=[3], rows=None, object_fit="contain", height=800
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [img_path],
outputs = [result],
cache_examples='lazy',
)
run_button.click(
fn = infer,
inputs = [img_path, seed, randomize_seed, timesteps, cfg_scale, perform_norm_guidance, super_res],
outputs = [result]
)
demo.queue(max_size=10).launch(share=True)