Commit
·
d3b2a4b
1
Parent(s):
445b4d2
feat: added disk variant to the space
Browse files- app.py +26 -7
- requirements.txt +3 -2
app.py
CHANGED
@@ -11,7 +11,7 @@ import time
|
|
11 |
|
12 |
|
13 |
@spaces.GPU
|
14 |
-
def process_images(image1, image2):
|
15 |
"""
|
16 |
Process two images and return a plot of the matching keypoints.
|
17 |
"""
|
@@ -19,8 +19,17 @@ def process_images(image1, image2):
|
|
19 |
return None
|
20 |
|
21 |
images = [image1, image2]
|
22 |
-
|
23 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
inputs = processor(images, return_tensors="pt")
|
25 |
inputs = inputs.to(model.device)
|
26 |
print(
|
@@ -148,14 +157,24 @@ with gr.Blocks(title="LightGlue Matching Demo") as demo:
|
|
148 |
)
|
149 |
gr.Markdown("""
|
150 |
## How to use:
|
151 |
-
1.
|
152 |
-
2.
|
153 |
-
3.
|
|
|
154 |
|
155 |
The app will create a side-by-side matching of your images using LightGlue.
|
156 |
You can also select an example image pair from the dataset.
|
157 |
""")
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
with gr.Row():
|
160 |
# Input images on the same row
|
161 |
image1 = gr.Image(label="First Image", type="pil")
|
@@ -168,7 +187,7 @@ with gr.Blocks(title="LightGlue Matching Demo") as demo:
|
|
168 |
output_plot = gr.Plot(label="Matching Results", scale=2)
|
169 |
|
170 |
# Connect the function
|
171 |
-
process_btn.click(fn=process_images, inputs=[image1, image2], outputs=[output_plot])
|
172 |
|
173 |
# Add some example usage
|
174 |
|
|
|
11 |
|
12 |
|
13 |
@spaces.GPU
|
14 |
+
def process_images(image1, image2, detector_choice):
|
15 |
"""
|
16 |
Process two images and return a plot of the matching keypoints.
|
17 |
"""
|
|
|
19 |
return None
|
20 |
|
21 |
images = [image1, image2]
|
22 |
+
|
23 |
+
# Select model based on detector choice
|
24 |
+
if detector_choice == "SuperPoint":
|
25 |
+
model_name = "ETH-CVG/lightglue_superpoint"
|
26 |
+
trust_remote_code = False
|
27 |
+
else: # DISK
|
28 |
+
model_name = "ETH-CVG/lightglue_disk"
|
29 |
+
trust_remote_code = True
|
30 |
+
|
31 |
+
processor = AutoImageProcessor.from_pretrained(model_name, trust_remote_code=trust_remote_code)
|
32 |
+
model = AutoModel.from_pretrained(model_name, device_map="auto", trust_remote_code=trust_remote_code)
|
33 |
inputs = processor(images, return_tensors="pt")
|
34 |
inputs = inputs.to(model.device)
|
35 |
print(
|
|
|
157 |
)
|
158 |
gr.Markdown("""
|
159 |
## How to use:
|
160 |
+
1. Select a detector (SuperPoint or DISK)
|
161 |
+
2. Upload two images using the file uploaders below
|
162 |
+
3. Click the 'Match Images' button
|
163 |
+
4. View the matched output image below. Higher scores are green, lower scores are red.
|
164 |
|
165 |
The app will create a side-by-side matching of your images using LightGlue.
|
166 |
You can also select an example image pair from the dataset.
|
167 |
""")
|
168 |
|
169 |
+
with gr.Row():
|
170 |
+
# Detector choice selector
|
171 |
+
detector_choice = gr.Radio(
|
172 |
+
choices=["SuperPoint", "DISK"],
|
173 |
+
value="SuperPoint",
|
174 |
+
label="Detector Choice",
|
175 |
+
info="Choose between SuperPoint or DISK detector"
|
176 |
+
)
|
177 |
+
|
178 |
with gr.Row():
|
179 |
# Input images on the same row
|
180 |
image1 = gr.Image(label="First Image", type="pil")
|
|
|
187 |
output_plot = gr.Plot(label="Matching Results", scale=2)
|
188 |
|
189 |
# Connect the function
|
190 |
+
process_btn.click(fn=process_images, inputs=[image1, image2, detector_choice], outputs=[output_plot])
|
191 |
|
192 |
# Add some example usage
|
193 |
|
requirements.txt
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
gradio>=5.34.2
|
2 |
Pillow>=10.0.0
|
3 |
numpy>=1.24.0
|
4 |
-
transformers @ git+https://github.com/huggingface/transformers.git@
|
5 |
matplotlib
|
6 |
torch
|
7 |
plotly
|
8 |
spaces
|
9 |
-
accelerate
|
|
|
|
1 |
gradio>=5.34.2
|
2 |
Pillow>=10.0.0
|
3 |
numpy>=1.24.0
|
4 |
+
transformers @ git+https://github.com/huggingface/transformers.git@1255480fd226129075e10c20842efd444f5b0e36
|
5 |
matplotlib
|
6 |
torch
|
7 |
plotly
|
8 |
spaces
|
9 |
+
accelerate
|
10 |
+
kornia
|