Commit
·
304aeb8
1
Parent(s):
2cd39db
feat: added drias model choice and changed TTD UI
Browse files- app.py +26 -15
- climateqa/engine/talk_to_data/main.py +22 -3
- climateqa/engine/talk_to_data/plot.py +5 -4
- climateqa/engine/talk_to_data/sql_query.py +13 -4
- climateqa/engine/talk_to_data/utils.py +36 -0
- climateqa/engine/talk_to_data/workflow.py +3 -2
- style.css +15 -5
app.py
CHANGED
|
@@ -12,7 +12,7 @@ from climateqa.engine.reranker import get_reranker
|
|
| 12 |
from climateqa.engine.graph import make_graph_agent,make_graph_agent_poc
|
| 13 |
from climateqa.engine.chains.retrieve_papers import find_papers
|
| 14 |
from climateqa.chat import start_chat, chat_stream, finish_chat
|
| 15 |
-
from climateqa.engine.talk_to_data.main import ask_drias
|
| 16 |
from climateqa.engine.talk_to_data.myVanna import MyVanna
|
| 17 |
|
| 18 |
from front.tabs import (create_config_modal, create_examples_tab, create_papers_tab, create_figures_tab, create_chat_interface, create_about_tab)
|
|
@@ -87,8 +87,8 @@ vn.connect_to_sqlite(db_vanna_path)
|
|
| 87 |
# def ask_vanna_query(query):
|
| 88 |
# return ask_vanna(vn, db_vanna_path, query)
|
| 89 |
|
| 90 |
-
def ask_drias_query(query, index_state):
|
| 91 |
-
return ask_drias(db_vanna_path, query, index_state)
|
| 92 |
|
| 93 |
async def chat(query, history, audience, sources, reports, relevant_content_sources_selection, search_only):
|
| 94 |
print("chat cqa - message received")
|
|
@@ -139,27 +139,40 @@ def update_sources_number_display(sources_textbox, figures_cards, current_graphs
|
|
| 139 |
|
| 140 |
# vanna_display = gr.Plot()
|
| 141 |
# vanna_direct_question.submit(ask_drias_query, [vanna_direct_question], [vanna_sql_query ,vanna_table, vanna_display])
|
|
|
|
| 142 |
def create_drias_tab():
|
| 143 |
with gr.Tab("Beta - Talk to DRIAS", elem_id="tab-vanna", id=6):
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
with gr.Accordion("
|
| 147 |
-
drias_sql_query = gr.Textbox(label="
|
|
|
|
|
|
|
| 148 |
drias_table = gr.DataFrame([], elem_id="vanna-table")
|
| 149 |
-
drias_display = gr.Plot()
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
prev_button = gr.Button("Previous")
|
| 153 |
next_button = gr.Button("Next")
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
drias_direct_question.submit(
|
| 161 |
ask_drias_query,
|
| 162 |
-
inputs=[drias_direct_question, index_state],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
outputs=[drias_sql_query, drias_table, drias_display, sql_queries_state, dataframes_state, plots_state, index_state]
|
| 164 |
)
|
| 165 |
|
|
@@ -184,8 +197,6 @@ def create_drias_tab():
|
|
| 184 |
inputs=[index_state, sql_queries_state, dataframes_state, plots_state],
|
| 185 |
outputs=[drias_sql_query, drias_table, drias_display, index_state]
|
| 186 |
)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
# # UI Layout Components
|
| 191 |
def cqa_tab(tab_name):
|
|
|
|
| 12 |
from climateqa.engine.graph import make_graph_agent,make_graph_agent_poc
|
| 13 |
from climateqa.engine.chains.retrieve_papers import find_papers
|
| 14 |
from climateqa.chat import start_chat, chat_stream, finish_chat
|
| 15 |
+
from climateqa.engine.talk_to_data.main import ask_drias, DRIAS_MODELS
|
| 16 |
from climateqa.engine.talk_to_data.myVanna import MyVanna
|
| 17 |
|
| 18 |
from front.tabs import (create_config_modal, create_examples_tab, create_papers_tab, create_figures_tab, create_chat_interface, create_about_tab)
|
|
|
|
| 87 |
# def ask_vanna_query(query):
|
| 88 |
# return ask_vanna(vn, db_vanna_path, query)
|
| 89 |
|
| 90 |
+
def ask_drias_query(query: str, index_state: int, drias_model: str):
|
| 91 |
+
return ask_drias(db_vanna_path, query, index_state, drias_model)
|
| 92 |
|
| 93 |
async def chat(query, history, audience, sources, reports, relevant_content_sources_selection, search_only):
|
| 94 |
print("chat cqa - message received")
|
|
|
|
| 139 |
|
| 140 |
# vanna_display = gr.Plot()
|
| 141 |
# vanna_direct_question.submit(ask_drias_query, [vanna_direct_question], [vanna_sql_query ,vanna_table, vanna_display])
|
| 142 |
+
|
| 143 |
def create_drias_tab():
|
| 144 |
with gr.Tab("Beta - Talk to DRIAS", elem_id="tab-vanna", id=6):
|
| 145 |
+
with gr.Row():
|
| 146 |
+
drias_direct_question = gr.Textbox(label="Direct Question", placeholder="You can write direct question here", elem_id="direct-question", interactive=True)
|
| 147 |
+
model_selection = gr.Dropdown(label="Model", choices=DRIAS_MODELS ,elem_id="drias-model", value="ALL", interactive=True)
|
| 148 |
|
| 149 |
+
with gr.Accordion(label="SQL Query Used"):
|
| 150 |
+
drias_sql_query = gr.Textbox(label="", elem_id="sql-query", interactive=False)
|
| 151 |
+
|
| 152 |
+
with gr.Accordion(label='Data used', open=False):
|
| 153 |
drias_table = gr.DataFrame([], elem_id="vanna-table")
|
|
|
|
| 154 |
|
| 155 |
+
with gr.Accordion(label="Chart"):
|
| 156 |
+
drias_display = gr.Plot(elem_id="vanna-plot")
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
prev_button = gr.Button("Previous")
|
| 160 |
next_button = gr.Button("Next")
|
| 161 |
|
| 162 |
+
sql_queries_state = gr.State([])
|
| 163 |
+
dataframes_state = gr.State([])
|
| 164 |
+
plots_state = gr.State([])
|
| 165 |
+
index_state = gr.State(0)
|
| 166 |
|
| 167 |
drias_direct_question.submit(
|
| 168 |
ask_drias_query,
|
| 169 |
+
inputs=[drias_direct_question, index_state, model_selection],
|
| 170 |
+
outputs=[drias_sql_query, drias_table, drias_display, sql_queries_state, dataframes_state, plots_state, index_state]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
model_selection.change(
|
| 174 |
+
ask_drias_query,
|
| 175 |
+
inputs=[drias_direct_question, index_state, model_selection],
|
| 176 |
outputs=[drias_sql_query, drias_table, drias_display, sql_queries_state, dataframes_state, plots_state, index_state]
|
| 177 |
)
|
| 178 |
|
|
|
|
| 197 |
inputs=[index_state, sql_queries_state, dataframes_state, plots_state],
|
| 198 |
outputs=[drias_sql_query, drias_table, drias_display, index_state]
|
| 199 |
)
|
|
|
|
|
|
|
| 200 |
|
| 201 |
# # UI Layout Components
|
| 202 |
def cqa_tab(tab_name):
|
climateqa/engine/talk_to_data/main.py
CHANGED
|
@@ -13,13 +13,12 @@ def ask_llm_column_names(sql_query, llm):
|
|
| 13 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
| 14 |
return columns_list
|
| 15 |
|
| 16 |
-
def ask_drias(db_drias_path:str, query:str
|
| 17 |
-
final_state = drias_workflow(db_drias_path, query)
|
| 18 |
sql_queries = []
|
| 19 |
result_dataframes = []
|
| 20 |
figures = []
|
| 21 |
|
| 22 |
-
|
| 23 |
for plot_state in final_state['plot_states'].values():
|
| 24 |
for table_state in plot_state['table_states'].values():
|
| 25 |
if table_state['status'] == 'OK':
|
|
@@ -30,9 +29,29 @@ def ask_drias(db_drias_path:str, query:str , index_state: int):
|
|
| 30 |
result_dataframes.append(table_state['dataframe'])
|
| 31 |
if 'figure' in table_state and table_state['figure'] is not None:
|
| 32 |
figures.append(table_state['figure'](table_state['dataframe']))
|
|
|
|
| 33 |
|
| 34 |
return sql_queries[index_state], result_dataframes[index_state], figures[index_state], sql_queries, result_dataframes, figures, index_state
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# def ask_vanna(vn,db_vanna_path, query):
|
| 37 |
|
| 38 |
# try :
|
|
|
|
| 13 |
columns_list = ast.literal_eval(columns.strip("```python\n").strip())
|
| 14 |
return columns_list
|
| 15 |
|
| 16 |
+
def ask_drias(db_drias_path:str, query:str, index_state: int = 0, drias_model: str = "ALL"):
|
| 17 |
+
final_state = drias_workflow(db_drias_path, query, drias_model)
|
| 18 |
sql_queries = []
|
| 19 |
result_dataframes = []
|
| 20 |
figures = []
|
| 21 |
|
|
|
|
| 22 |
for plot_state in final_state['plot_states'].values():
|
| 23 |
for table_state in plot_state['table_states'].values():
|
| 24 |
if table_state['status'] == 'OK':
|
|
|
|
| 29 |
result_dataframes.append(table_state['dataframe'])
|
| 30 |
if 'figure' in table_state and table_state['figure'] is not None:
|
| 31 |
figures.append(table_state['figure'](table_state['dataframe']))
|
| 32 |
+
|
| 33 |
|
| 34 |
return sql_queries[index_state], result_dataframes[index_state], figures[index_state], sql_queries, result_dataframes, figures, index_state
|
| 35 |
|
| 36 |
+
DRIAS_MODELS = [
|
| 37 |
+
'ALL',
|
| 38 |
+
'RegCM4-6_MPI-ESM-LR',
|
| 39 |
+
'RACMO22E_EC-EARTH',
|
| 40 |
+
'RegCM4-6_HadGEM2-ES',
|
| 41 |
+
'HadREM3-GA7_EC-EARTH',
|
| 42 |
+
'HadREM3-GA7_CNRM-CM5',
|
| 43 |
+
'REMO2015_NorESM1-M',
|
| 44 |
+
'SMHI-RCA4_EC-EARTH',
|
| 45 |
+
'WRF381P_NorESM1-M',
|
| 46 |
+
'ALADIN63_CNRM-CM5',
|
| 47 |
+
'CCLM4-8-17_MPI-ESM-LR',
|
| 48 |
+
'HIRHAM5_IPSL-CM5A-MR',
|
| 49 |
+
'HadREM3-GA7_HadGEM2-ES',
|
| 50 |
+
'SMHI-RCA4_IPSL-CM5A-MR',
|
| 51 |
+
'HIRHAM5_NorESM1-M',
|
| 52 |
+
'REMO2009_MPI-ESM-LR',
|
| 53 |
+
'CCLM4-8-17_HadGEM2-ES'
|
| 54 |
+
]
|
| 55 |
# def ask_vanna(vn,db_vanna_path, query):
|
| 56 |
|
| 57 |
# try :
|
climateqa/engine/talk_to_data/plot.py
CHANGED
|
@@ -53,7 +53,7 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 53 |
# Compute the 10-year rolling average
|
| 54 |
sliding_averages = (
|
| 55 |
df_avg[indicator]
|
| 56 |
-
.rolling(window=10, min_periods=
|
| 57 |
.mean()
|
| 58 |
.astype(float)
|
| 59 |
.tolist()
|
|
@@ -68,7 +68,7 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 68 |
# Compute the 10-year rolling average
|
| 69 |
sliding_averages = (
|
| 70 |
df_model[indicator]
|
| 71 |
-
.rolling(window=10, min_periods=
|
| 72 |
.mean()
|
| 73 |
.astype(float)
|
| 74 |
.tolist()
|
|
@@ -241,6 +241,7 @@ def plot_distribution_of_indicator_for_given_year(
|
|
| 241 |
yaxis_title="Frequency",
|
| 242 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 243 |
showlegend=False,
|
|
|
|
| 244 |
)
|
| 245 |
|
| 246 |
return fig
|
|
@@ -313,8 +314,8 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
| 313 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
| 314 |
mapbox_zoom=3,
|
| 315 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
| 316 |
-
coloraxis_colorbar=dict(title=f"{indicator_label}"), # Add legend
|
| 317 |
-
title=f"{indicator_label} in {year} in France", # Title
|
| 318 |
)
|
| 319 |
return fig
|
| 320 |
|
|
|
|
| 53 |
# Compute the 10-year rolling average
|
| 54 |
sliding_averages = (
|
| 55 |
df_avg[indicator]
|
| 56 |
+
.rolling(window=10, min_periods=1)
|
| 57 |
.mean()
|
| 58 |
.astype(float)
|
| 59 |
.tolist()
|
|
|
|
| 68 |
# Compute the 10-year rolling average
|
| 69 |
sliding_averages = (
|
| 70 |
df_model[indicator]
|
| 71 |
+
.rolling(window=10, min_periods=1)
|
| 72 |
.mean()
|
| 73 |
.astype(float)
|
| 74 |
.tolist()
|
|
|
|
| 241 |
yaxis_title="Frequency",
|
| 242 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 243 |
showlegend=False,
|
| 244 |
+
pan=False
|
| 245 |
)
|
| 246 |
|
| 247 |
return fig
|
|
|
|
| 314 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
| 315 |
mapbox_zoom=3,
|
| 316 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
| 317 |
+
coloraxis_colorbar=dict(title=f"{indicator_label} {'(Model Average)' if model == 'ALL' else '(Model : ' + model + ')'}"), # Add legend
|
| 318 |
+
title=f"{indicator_label} in {year} in France ", # Title
|
| 319 |
)
|
| 320 |
return fig
|
| 321 |
|
climateqa/engine/talk_to_data/sql_query.py
CHANGED
|
@@ -60,10 +60,16 @@ def indicator_per_year_at_location_query(
|
|
| 60 |
indicator_column = params.get("indicator_column")
|
| 61 |
latitude = params.get("latitude")
|
| 62 |
longitude = params.get("longitude")
|
|
|
|
| 63 |
|
| 64 |
if indicator_column is None or latitude is None or longitude is None: # If one parameter is missing, returns an empty query
|
| 65 |
return ""
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return sql_query
|
| 68 |
|
| 69 |
class IndicatorForGivenYearQueryParams(TypedDict, total=False):
|
|
@@ -85,9 +91,12 @@ def indicator_for_given_year_query(
|
|
| 85 |
"""
|
| 86 |
indicator_column = params.get("indicator_column")
|
| 87 |
year = params.get('year')
|
| 88 |
-
|
| 89 |
if year is None or indicator_column is None: # If one parameter is missing, returns an empty query
|
| 90 |
return ""
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
return sql_query
|
|
|
|
| 60 |
indicator_column = params.get("indicator_column")
|
| 61 |
latitude = params.get("latitude")
|
| 62 |
longitude = params.get("longitude")
|
| 63 |
+
model = params.get('model')
|
| 64 |
|
| 65 |
if indicator_column is None or latitude is None or longitude is None: # If one parameter is missing, returns an empty query
|
| 66 |
return ""
|
| 67 |
+
|
| 68 |
+
if model == 'ALL':
|
| 69 |
+
sql_query = f"SELECT year, {indicator_column}, model\nFROM {table}\nWHERE latitude = {latitude} \nand longitude={longitude} \nOrder by Year"
|
| 70 |
+
else:
|
| 71 |
+
sql_query = f"SELECT year, {indicator_column}, model\nFROM {table}\nWHERE latitude = {latitude} \nand longitude={longitude} \nand model='{model}' \nOrder by Year"
|
| 72 |
+
|
| 73 |
return sql_query
|
| 74 |
|
| 75 |
class IndicatorForGivenYearQueryParams(TypedDict, total=False):
|
|
|
|
| 91 |
"""
|
| 92 |
indicator_column = params.get("indicator_column")
|
| 93 |
year = params.get('year')
|
| 94 |
+
model = params.get('model')
|
| 95 |
if year is None or indicator_column is None: # If one parameter is missing, returns an empty query
|
| 96 |
return ""
|
| 97 |
+
|
| 98 |
+
if model == 'ALL':
|
| 99 |
+
sql_query = f"Select {indicator_column}, latitude, longitude, model\nFrom {table}\nWhere year = {year}"
|
| 100 |
+
else:
|
| 101 |
+
sql_query = f"Select {indicator_column}, latitude, longitude, model\nFrom {table}\nWhere year = {year}\nand model = '{model}'"
|
| 102 |
return sql_query
|
climateqa/engine/talk_to_data/utils.py
CHANGED
|
@@ -27,6 +27,31 @@ def detect_location_with_openai(sentence):
|
|
| 27 |
return location_list[0]
|
| 28 |
else:
|
| 29 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def detectTable(sql_query):
|
|
@@ -65,6 +90,17 @@ def nearestNeighbourSQL(db: str, location: tuple, table: str):
|
|
| 65 |
|
| 66 |
|
| 67 |
def detect_relevant_tables(db: str, user_question: str, plot: Plot, llm) -> list[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
conn = sqlite3.connect(db)
|
| 69 |
cursor = conn.cursor()
|
| 70 |
|
|
|
|
| 27 |
return location_list[0]
|
| 28 |
else:
|
| 29 |
return ""
|
| 30 |
+
|
| 31 |
+
def detect_year_with_openai(sentence: str):
|
| 32 |
+
"""
|
| 33 |
+
Detects years in a sentence using OpenAI's API via LangChain.
|
| 34 |
+
"""
|
| 35 |
+
llm = get_llm()
|
| 36 |
+
|
| 37 |
+
prompt = f"""
|
| 38 |
+
Extract all years mentioned in the following sentence.
|
| 39 |
+
Return the result as a Python list. If no year are mentioned, return an empty list.
|
| 40 |
+
|
| 41 |
+
Sentence: "{sentence}"
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
response = llm.invoke(prompt)
|
| 45 |
+
if response is None:
|
| 46 |
+
return None
|
| 47 |
+
response_split = response.content.strip("```python\n").split('=')
|
| 48 |
+
years_list = []
|
| 49 |
+
if len(response_split) > 1:
|
| 50 |
+
years_list = ast.literal_eval(response_split[1])
|
| 51 |
+
if years_list and len(years_list) > 0:
|
| 52 |
+
return years_list[0]
|
| 53 |
+
else:
|
| 54 |
+
return None
|
| 55 |
|
| 56 |
|
| 57 |
def detectTable(sql_query):
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
def detect_relevant_tables(db: str, user_question: str, plot: Plot, llm) -> list[str]:
|
| 93 |
+
"""Detect relevant tables regarding the plot and the user input
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
db (str): database path
|
| 97 |
+
user_question (str): initial user input
|
| 98 |
+
plot (Plot): plot object for which we wanna plot
|
| 99 |
+
llm (_type_): LLM
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
list[str]: list of table names
|
| 103 |
+
"""
|
| 104 |
conn = sqlite3.connect(db)
|
| 105 |
cursor = conn.cursor()
|
| 106 |
|
climateqa/engine/talk_to_data/workflow.py
CHANGED
|
@@ -38,7 +38,7 @@ class State(TypedDict):
|
|
| 38 |
plots: list[str]
|
| 39 |
plot_states: dict[str, PlotState]
|
| 40 |
|
| 41 |
-
def drias_workflow(db_drias_path: str, user_input: str) -> State:
|
| 42 |
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
| 43 |
|
| 44 |
Args:
|
|
@@ -87,7 +87,7 @@ def drias_workflow(db_drias_path: str, user_input: str) -> State:
|
|
| 87 |
'status': 'OK'
|
| 88 |
}
|
| 89 |
table_state['params'] = {
|
| 90 |
-
'model':
|
| 91 |
}
|
| 92 |
for param_name in plot['params']:
|
| 93 |
param = find_param(state, param_name, table, db_drias_path)
|
|
@@ -99,6 +99,7 @@ def drias_workflow(db_drias_path: str, user_input: str) -> State:
|
|
| 99 |
if sql_query == "":
|
| 100 |
table_state['status'] = 'ERROR'
|
| 101 |
continue
|
|
|
|
| 102 |
|
| 103 |
table_state['sql_query'] = sql_query
|
| 104 |
results = execute_sql_query(db_drias_path, sql_query)
|
|
|
|
| 38 |
plots: list[str]
|
| 39 |
plot_states: dict[str, PlotState]
|
| 40 |
|
| 41 |
+
def drias_workflow(db_drias_path: str, user_input: str, model: str) -> State:
|
| 42 |
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
| 43 |
|
| 44 |
Args:
|
|
|
|
| 87 |
'status': 'OK'
|
| 88 |
}
|
| 89 |
table_state['params'] = {
|
| 90 |
+
'model': model
|
| 91 |
}
|
| 92 |
for param_name in plot['params']:
|
| 93 |
param = find_param(state, param_name, table, db_drias_path)
|
|
|
|
| 99 |
if sql_query == "":
|
| 100 |
table_state['status'] = 'ERROR'
|
| 101 |
continue
|
| 102 |
+
print(sql_query)
|
| 103 |
|
| 104 |
table_state['sql_query'] = sql_query
|
| 105 |
results = execute_sql_query(db_drias_path, sql_query)
|
style.css
CHANGED
|
@@ -487,7 +487,6 @@ a {
|
|
| 487 |
height: calc(100vh - 190px) !important;
|
| 488 |
overflow-y: scroll !important;
|
| 489 |
}
|
| 490 |
-
div#tab-vanna,
|
| 491 |
div#sources-figures,
|
| 492 |
div#graphs-container,
|
| 493 |
div#tab-citations {
|
|
@@ -607,14 +606,25 @@ a {
|
|
| 607 |
}
|
| 608 |
|
| 609 |
#vanna-display {
|
| 610 |
-
max-height:
|
| 611 |
/* overflow-y: scroll; */
|
| 612 |
}
|
| 613 |
#sql-query{
|
| 614 |
-
max-height:
|
| 615 |
overflow-y:scroll;
|
| 616 |
}
|
| 617 |
-
|
| 618 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
overflow-y:scroll;
|
|
|
|
|
|
|
|
|
|
| 620 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
height: calc(100vh - 190px) !important;
|
| 488 |
overflow-y: scroll !important;
|
| 489 |
}
|
|
|
|
| 490 |
div#sources-figures,
|
| 491 |
div#graphs-container,
|
| 492 |
div#tab-citations {
|
|
|
|
| 606 |
}
|
| 607 |
|
| 608 |
#vanna-display {
|
| 609 |
+
max-height: 200px;
|
| 610 |
/* overflow-y: scroll; */
|
| 611 |
}
|
| 612 |
#sql-query{
|
| 613 |
+
max-height: 300px;
|
| 614 |
overflow-y:scroll;
|
| 615 |
}
|
| 616 |
+
|
| 617 |
+
#sql-query span{
|
| 618 |
+
display: none;
|
| 619 |
+
}
|
| 620 |
+
div#tab-vanna{
|
| 621 |
+
max-height: 100¨vh;
|
| 622 |
overflow-y:scroll;
|
| 623 |
+
}
|
| 624 |
+
#vanna-plot{
|
| 625 |
+
max-height:500px
|
| 626 |
}
|
| 627 |
+
|
| 628 |
+
#drias-model{
|
| 629 |
+
max-width: 25%;
|
| 630 |
+
}
|