timeki commited on
Commit
5664fc8
·
1 Parent(s): 484fc0d

switch owid vectorstore to pinecone

Browse files
app.py CHANGED
@@ -92,11 +92,12 @@ share_client = service.get_share_client(file_share_name)
92
 
93
  user_id = create_user_id()
94
 
95
- vectorstore_graphs = Chroma(persist_directory="/home/tim/ai4s/climate_qa/climate-question-answering/data/vectorstore_owid", embedding_function=embeddings_function) # TODO make it api call
96
 
97
 
98
  # Create vectorstore and retriever
99
- vectorstore = get_pinecone_vectorstore(embeddings_function)
 
 
100
  llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
101
  reranker = get_reranker("nano")
102
  # agent = make_graph_agent(llm,vectorstore,reranker)
 
92
 
93
  user_id = create_user_id()
94
 
 
95
 
96
 
97
  # Create vectorstore and retriever
98
+ vectorstore = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX"))
99
+ vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX_OWID"), text_key="title")
100
+
101
  llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
102
  reranker = get_reranker("nano")
103
  # agent = make_graph_agent(llm,vectorstore,reranker)
climateqa/engine/chains/retriever.py CHANGED
@@ -87,9 +87,10 @@ def make_retriever_node(vectorstore,reranker,rerank_by_question=True, k_final=15
87
  vectorstore=vectorstore,
88
  sources = sources,
89
  # reports = ias_reports,
90
- min_size = 200,
91
- k_summary = k_summary,k_total = k_before_reranking,
92
- threshold = 0.5,
 
93
  )
94
  docs_question = retriever.get_relevant_documents(question)
95
 
 
87
  vectorstore=vectorstore,
88
  sources = sources,
89
  # reports = ias_reports,
90
+ min_size = 200,
91
+ k_summary = k_summary,
92
+ k_total = k_before_reranking,
93
+ threshold = 0.5,
94
  )
95
  docs_question = retriever.get_relevant_documents(question)
96
 
climateqa/engine/vectorstore.py CHANGED
@@ -19,7 +19,7 @@ def get_chroma_vectorstore(embedding_function, persist_directory="/home/dora/cli
19
  return vectorstore
20
 
21
 
22
- def get_pinecone_vectorstore(embeddings,text_key = "content"):
23
 
24
  # # initialize pinecone
25
  # pinecone.init(
@@ -33,7 +33,7 @@ def get_pinecone_vectorstore(embeddings,text_key = "content"):
33
  # return vectorstore
34
 
35
  pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
36
- index = pc.Index(os.getenv("PINECONE_API_INDEX"))
37
 
38
  vectorstore = PineconeVectorstore(
39
  index, embeddings, text_key,
 
19
  return vectorstore
20
 
21
 
22
+ def get_pinecone_vectorstore(embeddings,text_key = "content", index_name = os.getenv("PINECONE_API_INDEX")):
23
 
24
  # # initialize pinecone
25
  # pinecone.init(
 
33
  # return vectorstore
34
 
35
  pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
36
+ index = pc.Index(index_name)
37
 
38
  vectorstore = PineconeVectorstore(
39
  index, embeddings, text_key,