Commit
·
80062dd
1
Parent(s):
b21471a
feat: added evolution for a specific month plot
Browse files
climateqa/engine/talk_to_data/input_processing.py
CHANGED
|
@@ -118,7 +118,28 @@ async def detect_year_with_openai(sentence: str) -> str:
|
|
| 118 |
return years_list[0]
|
| 119 |
else:
|
| 120 |
return ""
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
async def detect_relevant_tables(user_question: str, plot: Plot, llm, table_names_list: list[str]) -> list[str]:
|
| 124 |
"""Identifies relevant tables for a plot based on user input.
|
|
@@ -227,6 +248,14 @@ async def find_year(user_input: str) -> str| None:
|
|
| 227 |
return None
|
| 228 |
return year
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
async def find_relevant_plots(state: State, llm, plots: list[Plot]) -> list[str]:
|
| 231 |
print("---- Find relevant plots ----")
|
| 232 |
relevant_plots = await detect_relevant_plots(state['user_input'], llm, plots)
|
|
@@ -237,16 +266,9 @@ async def find_relevant_tables_per_plot(state: State, plot: Plot, llm, tables: l
|
|
| 237 |
relevant_tables = await detect_relevant_tables(state['user_input'], plot, llm, tables)
|
| 238 |
return relevant_tables
|
| 239 |
|
| 240 |
-
async def find_param(state: State, param_name:str, mode: Literal['DRIAS', 'IPCC'] = 'DRIAS') -> dict[str, Optional[str]] | Location | None:
|
| 241 |
-
"""
|
| 242 |
-
|
| 243 |
-
Args:
|
| 244 |
-
state (State): state of the workflow
|
| 245 |
-
param_name (str): name of the desired parameter
|
| 246 |
-
table (str): name of the table
|
| 247 |
-
|
| 248 |
-
Returns:
|
| 249 |
-
dict[str, Any] | None:
|
| 250 |
"""
|
| 251 |
if param_name == 'location':
|
| 252 |
location = await find_location(state['user_input'], mode)
|
|
@@ -254,4 +276,8 @@ async def find_param(state: State, param_name:str, mode: Literal['DRIAS', 'IPCC'
|
|
| 254 |
if param_name == 'year':
|
| 255 |
year = await find_year(state['user_input'])
|
| 256 |
return {'year': year}
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
return years_list[0]
|
| 119 |
else:
|
| 120 |
return ""
|
| 121 |
+
|
| 122 |
+
async def detect_month_with_openai(sentence: str) -> str:
|
| 123 |
+
"""
|
| 124 |
+
Detects month in a sentence using OpenAI's API via LangChain.
|
| 125 |
+
Returns the month as an integer string (e.g., "7" for July), or "" if not found.
|
| 126 |
+
"""
|
| 127 |
+
llm = get_llm()
|
| 128 |
+
prompt = """
|
| 129 |
+
Extract the month (as a number from 1 to 12) mentioned in the following sentence.
|
| 130 |
+
Return the result as a Python list of integers. If no month is mentioned, return an empty list.
|
| 131 |
+
|
| 132 |
+
Sentence: "{sentence}"
|
| 133 |
+
"""
|
| 134 |
+
prompt = ChatPromptTemplate.from_template(prompt)
|
| 135 |
+
structured_llm = llm.with_structured_output(ArrayOutput)
|
| 136 |
+
chain = prompt | structured_llm
|
| 137 |
+
response: ArrayOutput = await chain.ainvoke({"sentence": sentence})
|
| 138 |
+
months_list = eval(response['array'])
|
| 139 |
+
if len(months_list) > 0:
|
| 140 |
+
return str(months_list[0])
|
| 141 |
+
else:
|
| 142 |
+
return ""
|
| 143 |
|
| 144 |
async def detect_relevant_tables(user_question: str, plot: Plot, llm, table_names_list: list[str]) -> list[str]:
|
| 145 |
"""Identifies relevant tables for a plot based on user input.
|
|
|
|
| 248 |
return None
|
| 249 |
return year
|
| 250 |
|
| 251 |
+
async def find_month(user_input: str) -> str | None:
|
| 252 |
+
"""Extracts month information from user input using LLM."""
|
| 253 |
+
print(f"---- Find month ---")
|
| 254 |
+
month = await detect_month_with_openai(user_input)
|
| 255 |
+
if month == "":
|
| 256 |
+
return None
|
| 257 |
+
return month
|
| 258 |
+
|
| 259 |
async def find_relevant_plots(state: State, llm, plots: list[Plot]) -> list[str]:
|
| 260 |
print("---- Find relevant plots ----")
|
| 261 |
relevant_plots = await detect_relevant_plots(state['user_input'], llm, plots)
|
|
|
|
| 266 |
relevant_tables = await detect_relevant_tables(state['user_input'], plot, llm, tables)
|
| 267 |
return relevant_tables
|
| 268 |
|
| 269 |
+
async def find_param(state: State, param_name: str, mode: Literal['DRIAS', 'IPCC'] = 'DRIAS') -> dict[str, Optional[str]] | Location | None:
|
| 270 |
+
"""
|
| 271 |
+
Perform the good method to retrieve the desired parameter.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
"""
|
| 273 |
if param_name == 'location':
|
| 274 |
location = await find_location(state['user_input'], mode)
|
|
|
|
| 276 |
if param_name == 'year':
|
| 277 |
year = await find_year(state['user_input'])
|
| 278 |
return {'year': year}
|
| 279 |
+
if param_name == 'month':
|
| 280 |
+
month = await find_month(state['user_input'])
|
| 281 |
+
print(month)
|
| 282 |
+
return {'month': month}
|
| 283 |
+
return None
|
climateqa/engine/talk_to_data/ipcc/config.py
CHANGED
|
@@ -30,7 +30,8 @@ IPCC_MODELS = []
|
|
| 30 |
|
| 31 |
IPCC_PLOT_PARAMETERS = [
|
| 32 |
'year',
|
| 33 |
-
'location'
|
|
|
|
| 34 |
]
|
| 35 |
|
| 36 |
MACRO_COUNTRIES = ['JP',
|
|
|
|
| 30 |
|
| 31 |
IPCC_PLOT_PARAMETERS = [
|
| 32 |
'year',
|
| 33 |
+
'location',
|
| 34 |
+
'month'
|
| 35 |
]
|
| 36 |
|
| 37 |
MACRO_COUNTRIES = ['JP',
|
climateqa/engine/talk_to_data/ipcc/plot_informations.py
CHANGED
|
@@ -47,4 +47,27 @@ Each grid point is colored according to the value of the indicator ({unit}), all
|
|
| 47 |
- For each grid point of {location} country ({country_name}), the value of {indicator} in {year} and for the selected scenario is extracted and mapped to its geographic coordinates.
|
| 48 |
- The grid points correspond to 1-degree squares centered on the grid points of the IPCC dataset. Each grid point has been mapped to a country using [**reverse_geocoder**](https://github.com/thampiman/reverse-geocoder).
|
| 49 |
- The coordinates used for each region are those of the closest available grid point in the IPCC database, which uses a regular grid with a spatial resolution of 1 degree.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
"""
|
|
|
|
| 47 |
- For each grid point of {location} country ({country_name}), the value of {indicator} in {year} and for the selected scenario is extracted and mapped to its geographic coordinates.
|
| 48 |
- The grid points correspond to 1-degree squares centered on the grid points of the IPCC dataset. Each grid point has been mapped to a country using [**reverse_geocoder**](https://github.com/thampiman/reverse-geocoder).
|
| 49 |
- The coordinates used for each region are those of the closest available grid point in the IPCC database, which uses a regular grid with a spatial resolution of 1 degree.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def indicator_specific_month_evolution_informations(
|
| 53 |
+
indicator: str,
|
| 54 |
+
params: dict[str, str]
|
| 55 |
+
) -> str:
|
| 56 |
+
if "location" not in params:
|
| 57 |
+
raise ValueError('"location" must be provided in params')
|
| 58 |
+
location = params["location"]
|
| 59 |
+
if "month" not in params:
|
| 60 |
+
raise ValueError('"month" must be provided in params')
|
| 61 |
+
month = params["month"]
|
| 62 |
+
unit = IPCC_INDICATOR_TO_UNIT[indicator]
|
| 63 |
+
return f"""
|
| 64 |
+
This plot shows how the climate indicator **{indicator}** evolves over time in **{location}** for the month of **{month}**.
|
| 65 |
+
It combines both historical (from 1950 to 2015) observations and future (from 2016 to 2100) projections for the different SSP climate scenarios (SSP126, SSP245, SSP370 and SSP585).
|
| 66 |
+
The x-axis represents the years (from 1950 to 2100), and the y-axis shows the value of the {indicator} ({unit}) for the selected month.
|
| 67 |
+
Each line corresponds to a different scenario, allowing you to compare how {indicator} for month {month} might change under various future conditions.
|
| 68 |
+
|
| 69 |
+
**Data source:**
|
| 70 |
+
- The data comes from the IPCC climate datasets (Parquet files) for the relevant indicator, location, and month.
|
| 71 |
+
- For each year and scenario, the value of {indicator} for month {month} is extracted for the selected location.
|
| 72 |
+
- The coordinates used for {location} correspond to the closest available point in the IPCC database, which uses a regular grid with a spatial resolution of 1 degree.
|
| 73 |
"""
|
climateqa/engine/talk_to_data/ipcc/plots.py
CHANGED
|
@@ -5,8 +5,8 @@ import pandas as pd
|
|
| 5 |
import geojson
|
| 6 |
|
| 7 |
from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_COLORSCALE, IPCC_INDICATOR_TO_UNIT, IPCC_SCENARIO
|
| 8 |
-
from climateqa.engine.talk_to_data.ipcc.plot_informations import choropleth_map_informations, indicator_evolution_informations
|
| 9 |
-
from climateqa.engine.talk_to_data.ipcc.queries import indicator_for_given_year_query, indicator_per_year_at_location_query
|
| 10 |
from climateqa.engine.talk_to_data.objects.plot import Plot
|
| 11 |
|
| 12 |
def generate_geojson_polygons(latitudes: list[float], longitudes: list[float], indicators: list[float]) -> geojson.FeatureCollection:
|
|
@@ -102,6 +102,82 @@ indicator_evolution_at_location_historical_and_projections: Plot = {
|
|
| 102 |
"short_name": "Evolution"
|
| 103 |
}
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def plot_choropleth_map_of_country_indicator_for_specific_year(
|
| 106 |
params: dict,
|
| 107 |
) -> Callable[[pd.DataFrame], Figure]:
|
|
@@ -167,6 +243,7 @@ def plot_choropleth_map_of_country_indicator_for_specific_year(
|
|
| 167 |
|
| 168 |
return plot_data
|
| 169 |
|
|
|
|
| 170 |
choropleth_map_of_country_indicator_for_specific_year: Plot = {
|
| 171 |
"name": "Choropleth Map of a Country's Indicator Distribution for a Specific Year",
|
| 172 |
"description": (
|
|
@@ -185,5 +262,6 @@ choropleth_map_of_country_indicator_for_specific_year: Plot = {
|
|
| 185 |
|
| 186 |
IPCC_PLOTS = [
|
| 187 |
indicator_evolution_at_location_historical_and_projections,
|
| 188 |
-
choropleth_map_of_country_indicator_for_specific_year
|
|
|
|
| 189 |
]
|
|
|
|
| 5 |
import geojson
|
| 6 |
|
| 7 |
from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_COLORSCALE, IPCC_INDICATOR_TO_UNIT, IPCC_SCENARIO
|
| 8 |
+
from climateqa.engine.talk_to_data.ipcc.plot_informations import choropleth_map_informations, indicator_evolution_informations, indicator_specific_month_evolution_informations
|
| 9 |
+
from climateqa.engine.talk_to_data.ipcc.queries import indicator_for_given_year_query, indicator_per_year_and_specific_month_at_location_query, indicator_per_year_at_location_query
|
| 10 |
from climateqa.engine.talk_to_data.objects.plot import Plot
|
| 11 |
|
| 12 |
def generate_geojson_polygons(latitudes: list[float], longitudes: list[float], indicators: list[float]) -> geojson.FeatureCollection:
|
|
|
|
| 102 |
"short_name": "Evolution"
|
| 103 |
}
|
| 104 |
|
| 105 |
+
def plot_indicator_monthly_evolution_at_location(
|
| 106 |
+
params: dict,
|
| 107 |
+
) -> Callable[[pd.DataFrame], Figure]:
|
| 108 |
+
"""
|
| 109 |
+
Returns a function that generates a line plot showing the evolution of a climate indicator
|
| 110 |
+
for a specific month over time at a specific location, including both historical data
|
| 111 |
+
and future projections for different climate scenarios.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
params (dict): Dictionary with:
|
| 115 |
+
- indicator_column (str): Name of the climate indicator column to plot.
|
| 116 |
+
- location (str): Location (e.g., country, city) for which to plot the indicator.
|
| 117 |
+
- month (int): Month number (1-12) to plot.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
Callable[[pd.DataFrame], Figure]: Function that takes a DataFrame and returns a Plotly Figure.
|
| 121 |
+
"""
|
| 122 |
+
indicator = params["indicator_column"]
|
| 123 |
+
location = params["location"]
|
| 124 |
+
month = params["month"]
|
| 125 |
+
indicator_label = " ".join(word.capitalize() for word in indicator.split("_"))
|
| 126 |
+
unit = IPCC_INDICATOR_TO_UNIT.get(indicator, "")
|
| 127 |
+
|
| 128 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 129 |
+
df = df.sort_values(by='year')
|
| 130 |
+
years = df['year'].astype(int).tolist()
|
| 131 |
+
indicators = df[indicator].astype(float).tolist()
|
| 132 |
+
scenarios = df['scenario'].astype(str).tolist()
|
| 133 |
+
|
| 134 |
+
# Find last historical value for continuity
|
| 135 |
+
last_historical = [(y, v) for y, v, s in zip(years, indicators, scenarios) if s == 'historical']
|
| 136 |
+
last_historical_year, last_historical_indicator = last_historical[-1] if last_historical else (None, None)
|
| 137 |
+
|
| 138 |
+
fig = go.Figure()
|
| 139 |
+
for scenario in IPCC_SCENARIO:
|
| 140 |
+
x = [y for y, s in zip(years, scenarios) if s == scenario]
|
| 141 |
+
y = [v for v, s in zip(indicators, scenarios) if s == scenario]
|
| 142 |
+
# Connect historical to scenario
|
| 143 |
+
if scenario != 'historical' and last_historical_indicator is not None:
|
| 144 |
+
x = [last_historical_year] + x
|
| 145 |
+
y = [last_historical_indicator] + y
|
| 146 |
+
fig.add_trace(go.Scatter(
|
| 147 |
+
x=x,
|
| 148 |
+
y=y,
|
| 149 |
+
mode='lines',
|
| 150 |
+
name=scenario
|
| 151 |
+
))
|
| 152 |
+
|
| 153 |
+
fig.update_layout(
|
| 154 |
+
title=f'Evolution of {indicator_label} in {location} for Month {month} (Historical + SSP Scenarios)',
|
| 155 |
+
xaxis_title='Year',
|
| 156 |
+
yaxis_title=f'{indicator_label} ({unit})',
|
| 157 |
+
legend_title='Scenario',
|
| 158 |
+
height=800,
|
| 159 |
+
)
|
| 160 |
+
return fig
|
| 161 |
+
|
| 162 |
+
return plot_data
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
indicator_specific_month_evolution_at_location: Plot = {
|
| 166 |
+
"name": "Indicator specific month Evolution at Location (Historical + Projections)",
|
| 167 |
+
"description": (
|
| 168 |
+
"Shows how a climate indicator (e.g., rainfall, temperature) for a specific month changes over time at a specific location, "
|
| 169 |
+
"including historical data and future projections. "
|
| 170 |
+
"Useful for questions about the value or trend of an indicator for a given month at a location, "
|
| 171 |
+
"such as 'How does July temperature evolve in Paris over time?'. "
|
| 172 |
+
"Parameters: indicator_column (the climate variable), location (e.g., country, city), month (1-12)."
|
| 173 |
+
),
|
| 174 |
+
"params": ["indicator_column", "location", "month"],
|
| 175 |
+
"plot_function": plot_indicator_monthly_evolution_at_location,
|
| 176 |
+
"sql_query": indicator_per_year_and_specific_month_at_location_query,
|
| 177 |
+
"plot_information": indicator_specific_month_evolution_informations,
|
| 178 |
+
"short_name": "Evolution for a specific month"
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
def plot_choropleth_map_of_country_indicator_for_specific_year(
|
| 182 |
params: dict,
|
| 183 |
) -> Callable[[pd.DataFrame], Figure]:
|
|
|
|
| 243 |
|
| 244 |
return plot_data
|
| 245 |
|
| 246 |
+
|
| 247 |
choropleth_map_of_country_indicator_for_specific_year: Plot = {
|
| 248 |
"name": "Choropleth Map of a Country's Indicator Distribution for a Specific Year",
|
| 249 |
"description": (
|
|
|
|
| 262 |
|
| 263 |
IPCC_PLOTS = [
|
| 264 |
indicator_evolution_at_location_historical_and_projections,
|
| 265 |
+
choropleth_map_of_country_indicator_for_specific_year,
|
| 266 |
+
indicator_specific_month_evolution_at_location
|
| 267 |
]
|
climateqa/engine/talk_to_data/ipcc/queries.py
CHANGED
|
@@ -74,6 +74,74 @@ def indicator_per_year_at_location_query(
|
|
| 74 |
"""
|
| 75 |
return sql_query.strip()
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
class IndicatorForGivenYearQueryParams(TypedDict, total=False):
|
| 78 |
"""
|
| 79 |
Parameters for querying an indicator's values across locations for a specific year.
|
|
@@ -140,4 +208,4 @@ def indicator_for_given_year_query(
|
|
| 140 |
ORDER BY latitude, longitude, scenario
|
| 141 |
"""
|
| 142 |
|
| 143 |
-
return sql_query.strip()
|
|
|
|
| 74 |
"""
|
| 75 |
return sql_query.strip()
|
| 76 |
|
| 77 |
+
class IndicatorPerYearAndSpecificMonthAtLocationQueryParams(TypedDict, total=False):
|
| 78 |
+
"""
|
| 79 |
+
Parameters for querying the evolution of an indicator per year for a specific month at a specific location.
|
| 80 |
+
|
| 81 |
+
Attributes:
|
| 82 |
+
indicator_column (str): Name of the climate indicator column.
|
| 83 |
+
latitude (str): Latitude of the location.
|
| 84 |
+
longitude (str): Longitude of the location.
|
| 85 |
+
country_code (str): Country code.
|
| 86 |
+
month (str): Month targeted
|
| 87 |
+
"""
|
| 88 |
+
indicator_column: str
|
| 89 |
+
latitude: str
|
| 90 |
+
longitude: str
|
| 91 |
+
country_code: str
|
| 92 |
+
month: str
|
| 93 |
+
|
| 94 |
+
def indicator_per_year_and_specific_month_at_location_query(
|
| 95 |
+
table: str, params: IndicatorPerYearAndSpecificMonthAtLocationQueryParams
|
| 96 |
+
) -> str:
|
| 97 |
+
"""
|
| 98 |
+
Builds an SQL query to get the evolution of an indicator per year for a specific month at a specific location.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
table (str): SQL table of the indicator.
|
| 102 |
+
params (dict): Dictionary with required params:
|
| 103 |
+
- indicator_column (str)
|
| 104 |
+
- latitude (str or float)
|
| 105 |
+
- longitude (str or float)
|
| 106 |
+
- month (int)
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
str: The SQL query string.
|
| 110 |
+
"""
|
| 111 |
+
indicator_column = params.get("indicator_column")
|
| 112 |
+
latitude = params.get("latitude")
|
| 113 |
+
longitude = params.get("longitude")
|
| 114 |
+
country_code = params.get("country_code")
|
| 115 |
+
month = params.get('month')
|
| 116 |
+
|
| 117 |
+
if not all([indicator_column, latitude, longitude, country_code, month]):
|
| 118 |
+
return ""
|
| 119 |
+
|
| 120 |
+
if country_code in MACRO_COUNTRIES:
|
| 121 |
+
table_path = f"'{IPCC_DATASET_URL}/{table.lower()}/{country_code}_macro.parquet'"
|
| 122 |
+
sql_query = f"""
|
| 123 |
+
SELECT year, scenario, {indicator_column}
|
| 124 |
+
FROM {table_path}
|
| 125 |
+
WHERE latitude = {latitude} AND longitude = {longitude} AND year >= 1950 AND month={month}
|
| 126 |
+
ORDER BY year, scenario
|
| 127 |
+
"""
|
| 128 |
+
elif country_code in HUGE_MACRO_COUNTRIES:
|
| 129 |
+
table_path = f"'{IPCC_DATASET_URL}/{table.lower()}/{country_code}_macro.parquet'"
|
| 130 |
+
sql_query = f"""
|
| 131 |
+
SELECT year, scenario, {indicator_column}
|
| 132 |
+
FROM {table_path}
|
| 133 |
+
WHERE latitude = {latitude} AND longitude = {longitude} AND year >= 1950
|
| 134 |
+
ORDER year, scenario
|
| 135 |
+
"""
|
| 136 |
+
else:
|
| 137 |
+
table_path = f"'{IPCC_DATASET_URL}/{table.lower()}/{country_code}.parquet'"
|
| 138 |
+
sql_query = f"""
|
| 139 |
+
SELECT year, scenario, MEDIAN({indicator_column}) AS {indicator_column}
|
| 140 |
+
FROM {table_path}
|
| 141 |
+
WHERE latitude = {latitude} AND longitude = {longitude} AND year >= 1950 AND month={month}
|
| 142 |
+
GROUP BY scenario, year
|
| 143 |
+
"""
|
| 144 |
+
return sql_query.strip()
|
| 145 |
class IndicatorForGivenYearQueryParams(TypedDict, total=False):
|
| 146 |
"""
|
| 147 |
Parameters for querying an indicator's values across locations for a specific year.
|
|
|
|
| 208 |
ORDER BY latitude, longitude, scenario
|
| 209 |
"""
|
| 210 |
|
| 211 |
+
return sql_query.strip()
|