Commit
·
ef61c09
1
Parent(s):
2745637
feat: added 2 new talk to data plots
Browse files
app.py
CHANGED
|
@@ -152,20 +152,17 @@ def create_drias_tab():
|
|
| 152 |
prev_button = gr.Button("Previous")
|
| 153 |
next_button = gr.Button("Next")
|
| 154 |
|
| 155 |
-
# Initialisation des données
|
| 156 |
sql_queries_state = gr.State([])
|
| 157 |
dataframes_state = gr.State([])
|
| 158 |
plots_state = gr.State([])
|
| 159 |
index_state = gr.State(0) # To track the current position
|
| 160 |
|
| 161 |
-
# Action sur la soumission du texte
|
| 162 |
drias_direct_question.submit(
|
| 163 |
ask_drias_query,
|
| 164 |
inputs=[drias_direct_question, index_state],
|
| 165 |
outputs=[drias_sql_query, drias_table, drias_display, sql_queries_state, dataframes_state, plots_state, index_state]
|
| 166 |
)
|
| 167 |
|
| 168 |
-
# Define functions to navigate history
|
| 169 |
def show_previous(index, sql_queries, dataframes, plots):
|
| 170 |
if index > 0:
|
| 171 |
index -= 1
|
|
|
|
| 152 |
prev_button = gr.Button("Previous")
|
| 153 |
next_button = gr.Button("Next")
|
| 154 |
|
|
|
|
| 155 |
sql_queries_state = gr.State([])
|
| 156 |
dataframes_state = gr.State([])
|
| 157 |
plots_state = gr.State([])
|
| 158 |
index_state = gr.State(0) # To track the current position
|
| 159 |
|
|
|
|
| 160 |
drias_direct_question.submit(
|
| 161 |
ask_drias_query,
|
| 162 |
inputs=[drias_direct_question, index_state],
|
| 163 |
outputs=[drias_sql_query, drias_table, drias_display, sql_queries_state, dataframes_state, plots_state, index_state]
|
| 164 |
)
|
| 165 |
|
|
|
|
| 166 |
def show_previous(index, sql_queries, dataframes, plots):
|
| 167 |
if index > 0:
|
| 168 |
index -= 1
|
climateqa/engine/talk_to_data/main.py
CHANGED
|
@@ -19,16 +19,17 @@ def ask_drias(db_drias_path:str, query:str , index_state: int):
|
|
| 19 |
result_dataframes = []
|
| 20 |
figures = []
|
| 21 |
|
|
|
|
| 22 |
for plot_state in final_state['plot_states'].values():
|
| 23 |
for table_state in plot_state['table_states'].values():
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
return sql_queries[index_state], result_dataframes[index_state], figures[index_state], sql_queries, result_dataframes, figures, index_state
|
| 34 |
|
|
|
|
| 19 |
result_dataframes = []
|
| 20 |
figures = []
|
| 21 |
|
| 22 |
+
|
| 23 |
for plot_state in final_state['plot_states'].values():
|
| 24 |
for table_state in plot_state['table_states'].values():
|
| 25 |
+
if table_state['status'] == 'OK':
|
| 26 |
+
if 'sql_query' in table_state and table_state['sql_query'] is not None:
|
| 27 |
+
sql_queries.append(table_state['sql_query'])
|
| 28 |
+
|
| 29 |
+
if 'dataframe' in table_state and table_state['dataframe'] is not None:
|
| 30 |
+
result_dataframes.append(table_state['dataframe'])
|
| 31 |
+
if 'figure' in table_state and table_state['figure'] is not None:
|
| 32 |
+
figures.append(table_state['figure'](table_state['dataframe']))
|
| 33 |
|
| 34 |
return sql_queries[index_state], result_dataframes[index_state], figures[index_state], sql_queries, result_dataframes, figures, index_state
|
| 35 |
|
climateqa/engine/talk_to_data/plot.py
CHANGED
|
@@ -1,9 +1,14 @@
|
|
| 1 |
from typing import Callable, TypedDict
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from plotly.graph_objects import Figure
|
| 4 |
import plotly.graph_objects as go
|
|
|
|
| 5 |
|
| 6 |
-
from climateqa.engine.talk_to_data.sql_query import
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
class Plot(TypedDict):
|
|
@@ -14,7 +19,7 @@ class Plot(TypedDict):
|
|
| 14 |
sql_query: Callable[..., str]
|
| 15 |
|
| 16 |
|
| 17 |
-
def
|
| 18 |
"""Generate the function to plot a line plot of an indicator per year at a certain location
|
| 19 |
|
| 20 |
Args:
|
|
@@ -25,6 +30,7 @@ def plot_indicator_per_year_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 25 |
"""
|
| 26 |
indicator = params["indicator_column"]
|
| 27 |
model = params["model"]
|
|
|
|
| 28 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 29 |
|
| 30 |
def plot_data(df: pd.DataFrame) -> Figure:
|
|
@@ -74,6 +80,7 @@ def plot_indicator_per_year_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 74 |
y=indicators,
|
| 75 |
name=f"Yearly {indicator_label}",
|
| 76 |
mode="lines",
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
# Sliding average dashed line
|
|
@@ -83,10 +90,10 @@ def plot_indicator_per_year_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 83 |
mode="lines",
|
| 84 |
name="10 years rolling average",
|
| 85 |
line=dict(dash="dash"),
|
| 86 |
-
marker=dict(color="#
|
| 87 |
)
|
| 88 |
fig.update_layout(
|
| 89 |
-
title=f"Plot of {indicator_label} in {
|
| 90 |
xaxis_title="Year",
|
| 91 |
yaxis_title=indicator_label,
|
| 92 |
template="plotly_white",
|
|
@@ -96,16 +103,18 @@ def plot_indicator_per_year_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 96 |
return plot_data
|
| 97 |
|
| 98 |
|
| 99 |
-
|
| 100 |
-
"name": "Indicator
|
| 101 |
-
"description": "Plot an evolution of the indicator at a certain location
|
| 102 |
"params": ["indicator_column", "location", "model"],
|
| 103 |
-
"plot_function":
|
| 104 |
"sql_query": indicator_per_year_at_location_query,
|
| 105 |
}
|
| 106 |
|
| 107 |
|
| 108 |
-
def plot_indicator_number_of_days_per_year_at_location(
|
|
|
|
|
|
|
| 109 |
"""Generate the function to plot a line plot of an indicator per year at a certain location
|
| 110 |
|
| 111 |
Args:
|
|
@@ -117,10 +126,19 @@ def plot_indicator_number_of_days_per_year_at_location(params) -> Callable[...,
|
|
| 117 |
|
| 118 |
indicator = params["indicator_column"]
|
| 119 |
model = params["model"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
fig = go.Figure()
|
| 123 |
-
if
|
| 124 |
df_avg = df.groupby("year", as_index=False)[indicator].mean()
|
| 125 |
|
| 126 |
# Transform to list to avoid pandas encoding
|
|
@@ -147,10 +165,10 @@ def plot_indicator_number_of_days_per_year_at_location(params) -> Callable[...,
|
|
| 147 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 148 |
|
| 149 |
fig.update_layout(
|
| 150 |
-
title=f"{indicator_label} in {
|
| 151 |
xaxis_title="Year",
|
| 152 |
yaxis_title=indicator,
|
| 153 |
-
yaxis=dict(range=[0,
|
| 154 |
bargap=0.5,
|
| 155 |
template="plotly_white",
|
| 156 |
)
|
|
@@ -169,4 +187,152 @@ indicator_number_of_days_per_year_at_location: Plot = {
|
|
| 169 |
}
|
| 170 |
|
| 171 |
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Callable, TypedDict
|
| 2 |
+
from matplotlib.figure import figaspect
|
| 3 |
import pandas as pd
|
| 4 |
from plotly.graph_objects import Figure
|
| 5 |
import plotly.graph_objects as go
|
| 6 |
+
import plotly.express as px
|
| 7 |
|
| 8 |
+
from climateqa.engine.talk_to_data.sql_query import (
|
| 9 |
+
indicator_for_given_year_query,
|
| 10 |
+
indicator_per_year_at_location_query,
|
| 11 |
+
)
|
| 12 |
|
| 13 |
|
| 14 |
class Plot(TypedDict):
|
|
|
|
| 19 |
sql_query: Callable[..., str]
|
| 20 |
|
| 21 |
|
| 22 |
+
def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
| 23 |
"""Generate the function to plot a line plot of an indicator per year at a certain location
|
| 24 |
|
| 25 |
Args:
|
|
|
|
| 30 |
"""
|
| 31 |
indicator = params["indicator_column"]
|
| 32 |
model = params["model"]
|
| 33 |
+
location = params["location"]
|
| 34 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 35 |
|
| 36 |
def plot_data(df: pd.DataFrame) -> Figure:
|
|
|
|
| 80 |
y=indicators,
|
| 81 |
name=f"Yearly {indicator_label}",
|
| 82 |
mode="lines",
|
| 83 |
+
marker=dict(color="#1f77b4"),
|
| 84 |
)
|
| 85 |
|
| 86 |
# Sliding average dashed line
|
|
|
|
| 90 |
mode="lines",
|
| 91 |
name="10 years rolling average",
|
| 92 |
line=dict(dash="dash"),
|
| 93 |
+
marker=dict(color="#d62728"),
|
| 94 |
)
|
| 95 |
fig.update_layout(
|
| 96 |
+
title=f"Plot of {indicator_label} in {location} {'(Model Average)' if model == 'ALL' else '(Model : ' + model + ')'}",
|
| 97 |
xaxis_title="Year",
|
| 98 |
yaxis_title=indicator_label,
|
| 99 |
template="plotly_white",
|
|
|
|
| 103 |
return plot_data
|
| 104 |
|
| 105 |
|
| 106 |
+
indicator_evolution_at_location: Plot = {
|
| 107 |
+
"name": "Indicator evolution at location",
|
| 108 |
+
"description": "Plot an evolution of the indicator at a certain location",
|
| 109 |
"params": ["indicator_column", "location", "model"],
|
| 110 |
+
"plot_function": plot_indicator_evolution_at_location,
|
| 111 |
"sql_query": indicator_per_year_at_location_query,
|
| 112 |
}
|
| 113 |
|
| 114 |
|
| 115 |
+
def plot_indicator_number_of_days_per_year_at_location(
|
| 116 |
+
params: dict,
|
| 117 |
+
) -> Callable[..., Figure]:
|
| 118 |
"""Generate the function to plot a line plot of an indicator per year at a certain location
|
| 119 |
|
| 120 |
Args:
|
|
|
|
| 126 |
|
| 127 |
indicator = params["indicator_column"]
|
| 128 |
model = params["model"]
|
| 129 |
+
location = params["location"]
|
| 130 |
+
|
| 131 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 132 |
+
"""Generate the figure thanks to the dataframe
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
df (pd.DataFrame): pandas dataframe with the required data
|
| 136 |
|
| 137 |
+
Returns:
|
| 138 |
+
Figure: Plotly figure
|
| 139 |
+
"""
|
| 140 |
fig = go.Figure()
|
| 141 |
+
if model == "ALL":
|
| 142 |
df_avg = df.groupby("year", as_index=False)[indicator].mean()
|
| 143 |
|
| 144 |
# Transform to list to avoid pandas encoding
|
|
|
|
| 165 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 166 |
|
| 167 |
fig.update_layout(
|
| 168 |
+
title=f"{indicator_label} in {location} {'(Model Average)' if model == 'ALL' else '(Model : ' + model + ')'}",
|
| 169 |
xaxis_title="Year",
|
| 170 |
yaxis_title=indicator,
|
| 171 |
+
yaxis=dict(range=[0, max(indicators)]),
|
| 172 |
bargap=0.5,
|
| 173 |
template="plotly_white",
|
| 174 |
)
|
|
|
|
| 187 |
}
|
| 188 |
|
| 189 |
|
| 190 |
+
def plot_distribution_of_indicator_for_given_year(
|
| 191 |
+
params: dict,
|
| 192 |
+
) -> Callable[..., Figure]:
|
| 193 |
+
"""Generate an histogram of the distribution of an indicator for a given year
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
params (dict): dictionnary with the required params : model, indicator_column, year
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
Callable[..., Figure]: Function which can be call to create the figure with the associated dataframe
|
| 200 |
+
"""
|
| 201 |
+
indicator = params["indicator_column"]
|
| 202 |
+
model = params["model"]
|
| 203 |
+
year = params["year"]
|
| 204 |
+
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 205 |
+
|
| 206 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 207 |
+
"""Generate the figure thanks to the dataframe
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
df (pd.DataFrame): pandas dataframe with the required data
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
Figure: Plotly figure
|
| 214 |
+
"""
|
| 215 |
+
fig = go.Figure()
|
| 216 |
+
if params["model"] == "ALL":
|
| 217 |
+
df_avg = df.groupby(["latitude", "longitude"], as_index=False)[
|
| 218 |
+
indicator
|
| 219 |
+
].mean()
|
| 220 |
+
|
| 221 |
+
# Transform to list to avoid pandas encoding
|
| 222 |
+
indicators = df_avg[indicator].astype(float).tolist()
|
| 223 |
+
else:
|
| 224 |
+
df_model = df[df["model"] == model]
|
| 225 |
+
|
| 226 |
+
# Transform to list to avoid pandas encoding
|
| 227 |
+
indicators = df_model[indicator].astype(float).tolist()
|
| 228 |
+
|
| 229 |
+
fig.add_trace(
|
| 230 |
+
go.Histogram(
|
| 231 |
+
x=indicators,
|
| 232 |
+
opacity=0.8,
|
| 233 |
+
histnorm="percent",
|
| 234 |
+
marker=dict(color="#1f77b4"),
|
| 235 |
+
)
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
fig.update_layout(
|
| 239 |
+
title=f"Distribution of {indicator_label} in {year} {'(Model Average)' if model == 'ALL' else '(Model : ' + model + ')'}",
|
| 240 |
+
xaxis_title=indicator_label,
|
| 241 |
+
yaxis_title="Frequency",
|
| 242 |
+
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 243 |
+
showlegend=False,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
return fig
|
| 247 |
+
|
| 248 |
+
return plot_data
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
distribution_of_indicator_for_given_year: Plot = {
|
| 252 |
+
"name": "Distribution of an indicator for a given year",
|
| 253 |
+
"description": "Plot an histogram of the distribution for a given year of the values of an indicator ",
|
| 254 |
+
"params": ["indicator_column", "model", "year"],
|
| 255 |
+
"plot_function": plot_distribution_of_indicator_for_given_year,
|
| 256 |
+
"sql_query": indicator_for_given_year_query,
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def plot_map_of_france_of_indicator_for_given_year(
|
| 261 |
+
params: dict,
|
| 262 |
+
) -> Callable[..., Figure]:
|
| 263 |
+
"""Generate a plot of the map of France for an indicator at a given year
|
| 264 |
+
|
| 265 |
+
Args:
|
| 266 |
+
params (dict): dictionnary with the required params : model, indicator_column, year
|
| 267 |
+
|
| 268 |
+
Returns:
|
| 269 |
+
Callable[..., Figure]: Function which can be call to create the figure with the associated dataframe
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
indicator = params["indicator_column"]
|
| 273 |
+
model = params["model"]
|
| 274 |
+
year = params["year"]
|
| 275 |
+
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 276 |
+
|
| 277 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 278 |
+
fig = go.Figure()
|
| 279 |
+
if model == "ALL":
|
| 280 |
+
df_avg = df.groupby(["latitude", "longitude"], as_index=False)[
|
| 281 |
+
indicator
|
| 282 |
+
].mean()
|
| 283 |
+
|
| 284 |
+
indicators = df_avg[indicator].astype(float).tolist()
|
| 285 |
+
latitudes = df_avg["latitude"].astype(float).tolist()
|
| 286 |
+
longitudes = df_avg["longitude"].astype(float).tolist()
|
| 287 |
+
|
| 288 |
+
else:
|
| 289 |
+
df_model = df[df["model"] == model]
|
| 290 |
+
|
| 291 |
+
# Transform to list to avoid pandas encoding
|
| 292 |
+
indicators = df_model[indicator].astype(float).tolist()
|
| 293 |
+
latitudes = df_model["latitude"].astype(float).tolist()
|
| 294 |
+
longitudes = df_model["longitude"].astype(float).tolist()
|
| 295 |
+
|
| 296 |
+
fig.add_trace(
|
| 297 |
+
go.Scattermapbox(
|
| 298 |
+
lat=latitudes,
|
| 299 |
+
lon=longitudes,
|
| 300 |
+
mode="markers",
|
| 301 |
+
marker=dict(
|
| 302 |
+
size=10,
|
| 303 |
+
color=indicators, # Color mapped to values
|
| 304 |
+
colorscale="Turbo", # Color scale (can be 'Plasma', 'Jet', etc.)
|
| 305 |
+
cmin=min(indicators), # Minimum color range
|
| 306 |
+
cmax=max(indicators), # Maximum color range
|
| 307 |
+
showscale=True, # Show colorbar
|
| 308 |
+
),
|
| 309 |
+
)
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
fig.update_layout(
|
| 313 |
+
mapbox_style="open-street-map", # Use OpenStreetMap
|
| 314 |
+
mapbox_zoom=3,
|
| 315 |
+
mapbox_center={"lat": 46.6, "lon": 2.0},
|
| 316 |
+
coloraxis_colorbar=dict(title=f"{indicator_label}"), # Add legend
|
| 317 |
+
title=f"{indicator_label} in {year} in France", # Title
|
| 318 |
+
)
|
| 319 |
+
return fig
|
| 320 |
+
|
| 321 |
+
return plot_data
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
map_of_france_of_indicator_for_given_year: Plot = {
|
| 325 |
+
"name": "Map of France of an indicator for a given year",
|
| 326 |
+
"description": "Heatmap on the map of France of the values of an in indicator for a given year",
|
| 327 |
+
"params": ["indicator_column", "year", "model"],
|
| 328 |
+
"plot_function": plot_map_of_france_of_indicator_for_given_year,
|
| 329 |
+
"sql_query": indicator_for_given_year_query,
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
PLOTS = [
|
| 334 |
+
indicator_evolution_at_location,
|
| 335 |
+
indicator_number_of_days_per_year_at_location,
|
| 336 |
+
distribution_of_indicator_for_given_year,
|
| 337 |
+
map_of_france_of_indicator_for_given_year,
|
| 338 |
+
]
|
climateqa/engine/talk_to_data/sql_query.py
CHANGED
|
@@ -39,10 +39,10 @@ def execute_sql_query(db_path: str, sql_query: str) -> SqlQueryOutput:
|
|
| 39 |
|
| 40 |
|
| 41 |
class IndicatorPerYearAtLocationQueryParams(TypedDict, total=False):
|
| 42 |
-
|
| 43 |
-
indicator_column: list[str]
|
| 44 |
latitude: str
|
| 45 |
longitude: str
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def indicator_per_year_at_location_query(
|
|
@@ -60,5 +60,34 @@ def indicator_per_year_at_location_query(
|
|
| 60 |
indicator_column = params.get("indicator_column")
|
| 61 |
latitude = params.get("latitude")
|
| 62 |
longitude = params.get("longitude")
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
return sql_query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
class IndicatorPerYearAtLocationQueryParams(TypedDict, total=False):
|
| 42 |
+
indicator_column: str
|
|
|
|
| 43 |
latitude: str
|
| 44 |
longitude: str
|
| 45 |
+
model: str
|
| 46 |
|
| 47 |
|
| 48 |
def indicator_per_year_at_location_query(
|
|
|
|
| 60 |
indicator_column = params.get("indicator_column")
|
| 61 |
latitude = params.get("latitude")
|
| 62 |
longitude = params.get("longitude")
|
| 63 |
+
|
| 64 |
+
if indicator_column is None or latitude is None or longitude is None: # If one parameter is missing, returns an empty query
|
| 65 |
+
return ""
|
| 66 |
+
sql_query = f"SELECT year, {indicator_column}, model\nFROM {table}\nWHERE latitude = {latitude} \nand longitude={longitude} \nOrder by Year"
|
| 67 |
return sql_query
|
| 68 |
+
|
| 69 |
+
class IndicatorForGivenYearQueryParams(TypedDict, total=False):
|
| 70 |
+
indicator_column: str
|
| 71 |
+
year: str
|
| 72 |
+
model: str
|
| 73 |
+
|
| 74 |
+
def indicator_for_given_year_query(
|
| 75 |
+
table:str, params: IndicatorForGivenYearQueryParams
|
| 76 |
+
) -> str:
|
| 77 |
+
"""SQL Query to get the values of an indicator with their latitudes, longitudes and models for a given year
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
table (str): sql table of the indicator
|
| 81 |
+
params (IndicatorForGivenYearQueryParams): dictionarry with the required params for the query
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
str: the sql query
|
| 85 |
+
"""
|
| 86 |
+
indicator_column = params.get("indicator_column")
|
| 87 |
+
year = params.get('year')
|
| 88 |
+
|
| 89 |
+
if year is None or indicator_column is None: # If one parameter is missing, returns an empty query
|
| 90 |
+
return ""
|
| 91 |
+
|
| 92 |
+
sql_query = f"Select {indicator_column}, latitude, longitude, model\nFrom {table}\nWhere year = {year}"
|
| 93 |
+
return sql_query
|
climateqa/engine/talk_to_data/workflow.py
CHANGED
|
@@ -9,6 +9,7 @@ from climateqa.engine.talk_to_data.plot import PLOTS, Plot
|
|
| 9 |
from climateqa.engine.talk_to_data.sql_query import execute_sql_query
|
| 10 |
from climateqa.engine.talk_to_data.utils import (
|
| 11 |
detect_relevant_plots,
|
|
|
|
| 12 |
loc2coords,
|
| 13 |
detect_location_with_openai,
|
| 14 |
nearestNeighbourSQL,
|
|
@@ -25,6 +26,7 @@ class TableState(TypedDict):
|
|
| 25 |
sql_query: NotRequired[str]
|
| 26 |
dataframe: NotRequired[pd.DataFrame | None]
|
| 27 |
figure: NotRequired[Callable[..., Figure]]
|
|
|
|
| 28 |
|
| 29 |
class PlotState(TypedDict):
|
| 30 |
plot_name: str
|
|
@@ -82,6 +84,7 @@ def drias_workflow(db_drias_path: str, user_input: str) -> State:
|
|
| 82 |
table_state: TableState = {
|
| 83 |
'table_name': table,
|
| 84 |
'params': {},
|
|
|
|
| 85 |
}
|
| 86 |
table_state['params'] = {
|
| 87 |
'model': 'ALL'
|
|
@@ -92,6 +95,11 @@ def drias_workflow(db_drias_path: str, user_input: str) -> State:
|
|
| 92 |
table_state['params'].update(param)
|
| 93 |
|
| 94 |
sql_query = plot['sql_query'](table, table_state['params'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
table_state['sql_query'] = sql_query
|
| 96 |
results = execute_sql_query(db_drias_path, sql_query)
|
| 97 |
|
|
@@ -134,6 +142,9 @@ def find_param(state: State, param_name:str, table: str, db_path: str) -> dict[s
|
|
| 134 |
if param_name == 'indicator_column':
|
| 135 |
indicator_column = find_indicator_column(table)
|
| 136 |
return {'indicator_column': indicator_column}
|
|
|
|
|
|
|
|
|
|
| 137 |
return None
|
| 138 |
|
| 139 |
|
|
@@ -155,6 +166,11 @@ def find_location(user_input: str, table: str, db_path: str) -> Location:
|
|
| 155 |
})
|
| 156 |
return output
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
def find_indicator_column(table: str) -> str:
|
| 159 |
"""Retrieve the name of the indicator column within the table in the database
|
| 160 |
|
|
@@ -178,12 +194,13 @@ def find_indicator_column(table: str) -> str:
|
|
| 178 |
"mean_annual_temperature": "mean_annual_temperature",
|
| 179 |
"number_of_tropical_nights": "number_tropical_nights",
|
| 180 |
"maximum_summer_temperature": "maximum_summer_temperature",
|
| 181 |
-
"
|
| 182 |
-
"
|
| 183 |
"number_of_days_with_a_dry_ground": "number_of_days_with_dry_ground"
|
| 184 |
}
|
| 185 |
return indicator_columns_per_table[table]
|
| 186 |
|
|
|
|
| 187 |
# def make_write_query_node():
|
| 188 |
|
| 189 |
# def write_query(state):
|
|
@@ -230,4 +247,4 @@ def find_indicator_column(table: str) -> str:
|
|
| 230 |
# output.update(fetch_data_from_sql_query(db_path, sql_query))
|
| 231 |
# return output
|
| 232 |
|
| 233 |
-
# return fetch_data
|
|
|
|
| 9 |
from climateqa.engine.talk_to_data.sql_query import execute_sql_query
|
| 10 |
from climateqa.engine.talk_to_data.utils import (
|
| 11 |
detect_relevant_plots,
|
| 12 |
+
detect_year_with_openai,
|
| 13 |
loc2coords,
|
| 14 |
detect_location_with_openai,
|
| 15 |
nearestNeighbourSQL,
|
|
|
|
| 26 |
sql_query: NotRequired[str]
|
| 27 |
dataframe: NotRequired[pd.DataFrame | None]
|
| 28 |
figure: NotRequired[Callable[..., Figure]]
|
| 29 |
+
status: str
|
| 30 |
|
| 31 |
class PlotState(TypedDict):
|
| 32 |
plot_name: str
|
|
|
|
| 84 |
table_state: TableState = {
|
| 85 |
'table_name': table,
|
| 86 |
'params': {},
|
| 87 |
+
'status': 'OK'
|
| 88 |
}
|
| 89 |
table_state['params'] = {
|
| 90 |
'model': 'ALL'
|
|
|
|
| 95 |
table_state['params'].update(param)
|
| 96 |
|
| 97 |
sql_query = plot['sql_query'](table, table_state['params'])
|
| 98 |
+
|
| 99 |
+
if sql_query == "":
|
| 100 |
+
table_state['status'] = 'ERROR'
|
| 101 |
+
continue
|
| 102 |
+
|
| 103 |
table_state['sql_query'] = sql_query
|
| 104 |
results = execute_sql_query(db_drias_path, sql_query)
|
| 105 |
|
|
|
|
| 142 |
if param_name == 'indicator_column':
|
| 143 |
indicator_column = find_indicator_column(table)
|
| 144 |
return {'indicator_column': indicator_column}
|
| 145 |
+
if param_name == 'year':
|
| 146 |
+
year = find_year(state['user_input'])
|
| 147 |
+
return {'year': year}
|
| 148 |
return None
|
| 149 |
|
| 150 |
|
|
|
|
| 166 |
})
|
| 167 |
return output
|
| 168 |
|
| 169 |
+
def find_year(user_input: str) -> str:
|
| 170 |
+
print(f"---- Find year ---")
|
| 171 |
+
year = detect_year_with_openai(user_input)
|
| 172 |
+
return year
|
| 173 |
+
|
| 174 |
def find_indicator_column(table: str) -> str:
|
| 175 |
"""Retrieve the name of the indicator column within the table in the database
|
| 176 |
|
|
|
|
| 194 |
"mean_annual_temperature": "mean_annual_temperature",
|
| 195 |
"number_of_tropical_nights": "number_tropical_nights",
|
| 196 |
"maximum_summer_temperature": "maximum_summer_temperature",
|
| 197 |
+
"number_of_days_with_tx_above_30": "number_of_days_with_tx_above_30",
|
| 198 |
+
"number_of_days_with_tx_above_35": "number_of_days_with_tx_above_35",
|
| 199 |
"number_of_days_with_a_dry_ground": "number_of_days_with_dry_ground"
|
| 200 |
}
|
| 201 |
return indicator_columns_per_table[table]
|
| 202 |
|
| 203 |
+
|
| 204 |
# def make_write_query_node():
|
| 205 |
|
| 206 |
# def write_query(state):
|
|
|
|
| 247 |
# output.update(fetch_data_from_sql_query(db_path, sql_query))
|
| 248 |
# return output
|
| 249 |
|
| 250 |
+
# return fetch_data
|