Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
-
|
| 4 |
import numpy as np
|
| 5 |
-
from tensorflow.keras.preprocessing import image
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def predict_input_image(img):
|
| 10 |
-
|
| 11 |
-
img =
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
model = tf.keras.models.load_model('Tumor_Model.h5')
|
|
|
|
|
|
|
| 15 |
prediction = model.predict(img)
|
| 16 |
-
result = 'No Tumor Detected' if prediction[0][0] > 0.
|
| 17 |
|
| 18 |
return f"Prediction: {result}"
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
# Define Gradio interface
|
| 23 |
iface = gr.Interface(
|
| 24 |
fn=predict_input_image,
|
| 25 |
-
inputs=
|
| 26 |
outputs="text",
|
| 27 |
)
|
| 28 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import tensorflow as tf
|
| 3 |
+
import cv2
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
+
def preprocess_image(img):
|
| 7 |
+
# Resize the image to the target size (256x256)
|
| 8 |
+
img = cv2.resize(img, (256, 256))
|
| 9 |
+
|
| 10 |
+
# Center crop to 224x224
|
| 11 |
+
h, w, _ = img.shape
|
| 12 |
+
crop_start_x = (w - 224) // 2
|
| 13 |
+
crop_start_y = (h - 224) // 2
|
| 14 |
+
img = img[crop_start_y:crop_start_y + 224, crop_start_x:crop_start_x + 224]
|
| 15 |
|
| 16 |
+
# Normalize the image
|
| 17 |
+
img = img / 255.0
|
| 18 |
+
|
| 19 |
+
# Convert BGR to RGB
|
| 20 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 21 |
+
|
| 22 |
+
# Expand dimensions to match model input shape
|
| 23 |
+
img = np.expand_dims(img, axis=0)
|
| 24 |
+
|
| 25 |
+
return img
|
| 26 |
|
| 27 |
def predict_input_image(img):
|
| 28 |
+
# Preprocess the input image
|
| 29 |
+
img = preprocess_image(img)
|
| 30 |
+
|
| 31 |
+
# Load the pre-trained model
|
| 32 |
model = tf.keras.models.load_model('Tumor_Model.h5')
|
| 33 |
+
|
| 34 |
+
# Make predictions
|
| 35 |
prediction = model.predict(img)
|
| 36 |
+
result = 'No Tumor Detected' if prediction[0][0] > 0.5 else 'Tumor detected'
|
| 37 |
|
| 38 |
return f"Prediction: {result}"
|
| 39 |
|
|
|
|
|
|
|
| 40 |
# Define Gradio interface
|
| 41 |
iface = gr.Interface(
|
| 42 |
fn=predict_input_image,
|
| 43 |
+
inputs=gr.Image(type="numpy", preprocess=preprocess_image),
|
| 44 |
outputs="text",
|
| 45 |
)
|
| 46 |
|