Spaces:
Build error
Build error
| import torch | |
| from transformers import pipeline | |
| from transformers import AutoModelForSeq2SeqLM | |
| from transformers import AutoTokenizer | |
| # Load trained model | |
| model = AutoModelForSeq2SeqLM.from_pretrained("/output/reframer") | |
| tokenizer = AutoTokenizer.from_pretrained("/output/reframer") | |
| reframer = pipeline('summarization', model=model, tokenizer=tokenizer) | |
| def reframe(text, strategy): | |
| text_with_strategy = text + "Strategy: ['" + strategy + "']" | |
| #Input Control | |
| #The input text cannot be too short to ensure it has substantial content to be reframed. It also cannot be too long to ensure the text has a focused idea. | |
| if len(text) < 15 or len(text) > 150: | |
| return "Please try again by inputing text with moderate length." | |
| if TextBlob(text).sentiment.polarity > 0.2: | |
| return "Please try again by inputing text that is negative." | |
| from hatesonar import Sonar | |
| sonar = Sonar() | |
| if sonar.ping(text)['classes'][1]['confidence'] > 0.8: | |
| return "Please try again by not inputing offensive language." | |
| #if TextBlob(text).sentiment.polarity > 0: | |
| # return "Please try again by inputing text that is negative." | |
| return reframer(text_with_strategy)[0]['summary_text'] | |
| import gradio as gr | |
| with gr.Blocks() as demo: | |
| text = gr.Textbox(label="Original Text") | |
| radio = gr.Radio( | |
| ["thankfulness", "neutralizing", "optimism", "growth", "impermanence", "self_affirmation"], label="Strategy to use?" | |
| ) | |
| output = gr.Textbox(label="Reframed Output") | |
| radio.change(fn=reframe, inputs=[text, radio], outputs=output) | |
| demo.launch() |