Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
def img2text(url): | |
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", use_fast=True) | |
text = image_to_text_model(url)[0]["generated_text"] | |
return text | |
def text2story(text): | |
story_generator = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B", device_map="auto", return_full_text=False) | |
prompt = f"Generate a short story under 100 words about {text} without other narrative." | |
generated = story_generator(prompt, max_new_tokens=130, do_sample=True, temperature=0.7) | |
story_text = generated[0]['generated_text'] | |
return story_text | |
def text2audio(story_text): | |
audio_generator = pipeline("text-to-speech", model="facebook/mms-tts-eng") | |
audio_output = audio_generator(story_text) | |
return audio_output | |
st.set_page_config(page_title="Once Upon A Time - Storytelling Application", page_icon="ππ°π¦π§") | |
st.header("Create a story of yours with an image!") | |
uploaded_file = st.file_uploader("Upload an image of your story!") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) | |
st.text('Processing img2text...') | |
scenario = img2text(uploaded_file.name) | |
st.write(scenario) | |
st.text('Generating a story...') | |
story = text2story(scenario) | |
st.write(story) | |
st.text('Generating audio data...') | |
audio_data = text2audio(story) | |
if st.button("Play Audio"): | |
st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) |