Spaces:
Running
Running
| import streamlit as st | |
| from transformers import pipeline | |
| def img2text(url): | |
| image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
| text = image_to_text_model(url)[0]["generated_text"] | |
| return text | |
| def text2story(text): | |
| story_generator = pipeline("text-generation", model="togethercomputer/RedPajama-INCITE-7B-Instruct", device_map="auto") | |
| prompt = f"Create a short story under 100 words based on: {text}" | |
| generated = story_generator(prompt) | |
| story_text = generated[0]['generated_text'] | |
| return story_text | |
| def text2audio(story_text): | |
| audio_data = pipeline("text-to-speech", model="facebook/mms-tts-eng") | |
| return audio_data | |
| st.set_page_config(page_title="Once Upon A Time - Storytelling Application", page_icon="ππ°π¦π§") | |
| st.header("Create a story of yours with an image!") | |
| uploaded_file = st.file_uploader("Upload an image of your story!") | |
| if uploaded_file is not None: | |
| print(uploaded_file) | |
| bytes_data = uploaded_file.getvalue() | |
| with open(uploaded_file.name, "wb") as file: | |
| file.write(bytes_data) | |
| st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) | |
| st.text('Processing img2text...') | |
| scenario = img2text(uploaded_file.name) | |
| st.write(scenario) | |
| st.text('Generating a story...') | |
| story = text2story(scenario) | |
| st.write(story) | |
| st.text('Generating audio data...') | |
| audio_data =text2audio(story) | |
| if st.button("Story Time!"): | |
| st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) |