import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text def text2story(text): story_generator = pipeline("text-generation", model="openai-community/gpt2") prompt = f"Create a short story under 100 words based on: {text}" generated = story_generator(prompt, max_length=100) story_text = generated[0]['generated_text'] return story_text def text2audio(story_text): audio_data = pipeline("text-to-speech", model="facebook/mms-tts-eng") return audio_data st.set_page_config(page_title="Once Upon A Time - Storytelling Application", page_icon="📖🏰🦄🧙") st.header("Create a story of yours with an image!") uploaded_file = st.file_uploader("Upload an image of your story!") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) st.text('Generating a story...') story = text2story(scenario) st.write(story) st.text('Generating audio data...') audio_data =text2audio(story) if st.button("Story Time!"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate'])