Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from huggingface_hub import from_pretrained_keras
|
6 |
+
|
7 |
+
model = from_pretrained_keras('Emmawang/mobilenet_v2_fake_image_detection')
|
8 |
+
|
9 |
+
# Define the Streamlit app
|
10 |
+
def main():
|
11 |
+
st.title("Fake Image Detection")
|
12 |
+
st.write("This is a demo of a fake image detection app using a MobileNetV2 model trained on the Fake Image Detection dataset.")
|
13 |
+
st.write("Upload an image to see if it's fake or not.")
|
14 |
+
st.write("")
|
15 |
+
|
16 |
+
uploaded_file = st.file_uploader("Choose an image...", type="png")
|
17 |
+
if uploaded_file is not None:
|
18 |
+
|
19 |
+
img = Image.open(uploaded_file).resize([128, 128])
|
20 |
+
img = np.array(img).astype(np.float32)
|
21 |
+
img = img/255
|
22 |
+
img = img.reshape(-1, 128, 128, 3)
|
23 |
+
result = get_prediction(img, model)
|
24 |
+
if result > 0.5:
|
25 |
+
st.write("This image is fake.")
|
26 |
+
else:
|
27 |
+
st.write("This image is real.")
|
28 |
+
|
29 |
+
|
30 |
+
def get_prediction(image, model):
|
31 |
+
prediction = model.predict(image)
|
32 |
+
return np.argmax(prediction)
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
main()
|
36 |
+
|