import streamlit as st from PIL import Image import numpy as np import tensorflow as tf from huggingface_hub import from_pretrained_keras model = from_pretrained_keras('Emmawang/mobilenet_v2_fake_image_detection') # Define the Streamlit app def main(): st.title("Fake Image Detection") st.write("This is a demo of a fake image detection app using a MobileNetV2 model trained on the Fake Image Detection dataset.") st.write("Upload an image to see if it's fake or not.") st.write("") uploaded_file = st.file_uploader("Choose an image...", type="png") if uploaded_file is not None: img = Image.open(uploaded_file).resize([128, 128]) img = np.array(img).astype(np.float32) img = img/255 img = img.reshape(-1, 128, 128, 3) result = get_prediction(img, model) if result > 0.5: st.write("This image is fake.") else: st.write("This image is real.") def get_prediction(image, model): prediction = model.predict(image) return np.argmax(prediction) if __name__ == '__main__': main()