Spaces:
Running
Running
""" | |
Main application for Dynamic Highscores system. | |
This file integrates all components into a unified application. | |
""" | |
import os | |
import gradio as gr | |
import threading | |
import time | |
from database_schema import DynamicHighscoresDB | |
from auth import HuggingFaceAuth | |
from benchmark_selection import BenchmarkSelector, create_benchmark_selection_ui | |
from evaluation_queue import EvaluationQueue, create_model_submission_ui | |
from leaderboard import Leaderboard, create_leaderboard_ui | |
from model_config import ModelConfigManager, create_community_framework_ui | |
from sample_benchmarks import add_sample_benchmarks | |
# Initialize components in main thread | |
db = DynamicHighscoresDB() | |
auth_manager = HuggingFaceAuth(db) | |
benchmark_selector = BenchmarkSelector(db, auth_manager) | |
evaluation_queue = EvaluationQueue(db, auth_manager, ModelConfigManager(db)) | |
leaderboard = Leaderboard(db) | |
model_config_manager = ModelConfigManager(db) | |
# Initialize sample benchmarks if none exist | |
print("Checking for existing benchmarks...") | |
benchmarks = db.get_benchmarks() | |
if not benchmarks or len(benchmarks) == 0: | |
print("No benchmarks found. Adding sample benchmarks...") | |
try: | |
# Make sure the database path is clear | |
print(f"Database path: {db.db_path}") | |
# Import and call the function directly | |
num_added = add_sample_benchmarks() | |
print(f"Added {num_added} sample benchmarks.") | |
except Exception as e: | |
print(f"Error adding sample benchmarks: {str(e)}") | |
# Try direct DB insertion as fallback | |
try: | |
print("Attempting direct benchmark insertion...") | |
db.add_benchmark( | |
name="MMLU (Massive Multitask Language Understanding)", | |
dataset_id="cais/mmlu", | |
description="Tests knowledge across 57 subjects" | |
) | |
print("Added fallback benchmark.") | |
except Exception as inner_e: | |
print(f"Fallback insertion failed: {str(inner_e)}") | |
else: | |
print(f"Found {len(benchmarks)} existing benchmarks.") | |
# Custom CSS with theme awareness | |
css = """ | |
/* Theme-adaptive colored info box */ | |
.info-text { | |
background-color: rgba(53, 130, 220, 0.1); | |
padding: 12px; | |
border-radius: 8px; | |
border-left: 4px solid #3498db; | |
margin: 12px 0; | |
} | |
/* High-contrast text for elements - works in light and dark themes */ | |
.info-text, .header, .footer, .tab-content, | |
button, input, textarea, select, option, | |
.gradio-container *, .markdown-text { | |
color: var(--text-color, inherit) !important; | |
} | |
/* Container styling */ | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
/* Header styling */ | |
.header { | |
text-align: center; | |
margin-bottom: 20px; | |
font-weight: bold; | |
font-size: 24px; | |
} | |
/* Footer styling */ | |
.footer { | |
text-align: center; | |
margin-top: 40px; | |
padding: 20px; | |
border-top: 1px solid var(--border-color-primary, #eee); | |
} | |
/* Login section styling */ | |
.login-section { | |
padding: 10px; | |
margin-bottom: 15px; | |
border-radius: 8px; | |
background-color: rgba(250, 250, 250, 0.1); | |
text-align: center; | |
} | |
/* Login button styling */ | |
.login-button { | |
background-color: #4CAF50 !important; | |
color: white !important; | |
font-weight: bold; | |
} | |
/* Force high contrast on specific input areas */ | |
input[type="text"], input[type="password"], textarea { | |
background-color: var(--background-fill-primary) !important; | |
color: var(--body-text-color) !important; | |
} | |
/* Force text visibility in multiple contexts */ | |
.gradio-markdown p, .gradio-markdown h1, .gradio-markdown h2, | |
.gradio-markdown h3, .gradio-markdown h4, .gradio-markdown li { | |
color: var(--body-text-color) !important; | |
} | |
/* Fix dark mode text visibility */ | |
@media (prefers-color-scheme: dark) { | |
input, textarea, select { | |
color: #ffffff !important; | |
} | |
::placeholder { | |
color: rgba(255, 255, 255, 0.5) !important; | |
} | |
} | |
""" | |
# JavaScript login implementation | |
def js_login_script(): | |
space_host = os.environ.get("SPACE_HOST", "localhost:7860") | |
redirect_uri = f"https://{space_host}" | |
client_id = os.environ.get("OAUTH_CLIENT_ID", "") | |
return f""" | |
<script src="https://unpkg.com/@huggingface/[email protected]/dist/index.umd.min.js"></script> | |
<script> | |
(async function() {{ | |
const HfHub = window.HfHub; | |
try {{ | |
// Check if we're returning from OAuth redirect | |
const oauthResult = await HfHub.oauthHandleRedirectIfPresent(); | |
if (oauthResult) {{ | |
console.log("User logged in:", oauthResult); | |
// Store the user info in localStorage | |
localStorage.setItem("hf_user", JSON.stringify(oauthResult.userInfo)); | |
localStorage.setItem("hf_token", oauthResult.accessToken); | |
// Update the UI to show logged in state | |
document.getElementById("login-status").textContent = "Logged in as: " + oauthResult.userInfo.name; | |
document.getElementById("login-button").style.display = "none"; | |
// Add token to headers for future requests | |
const originalFetch = window.fetch; | |
window.fetch = function(url, options = {{}}) {{ | |
if (!options.headers) {{ | |
options.headers = {{}}; | |
}} | |
// Add the token to the headers | |
options.headers["HF-Token"] = oauthResult.accessToken; | |
return originalFetch(url, options); | |
}}; | |
// Refresh the page to update server-side state | |
setTimeout(() => window.location.reload(), 1000); | |
}} | |
}} catch (error) {{ | |
console.error("OAuth error:", error); | |
}} | |
// Check if user is already logged in from localStorage | |
const storedUser = localStorage.getItem("hf_user"); | |
const storedToken = localStorage.getItem("hf_token"); | |
if (storedUser && storedToken) {{ | |
try {{ | |
const userInfo = JSON.parse(storedUser); | |
document.getElementById("login-status").textContent = "Logged in as: " + userInfo.name; | |
document.getElementById("login-button").style.display = "none"; | |
// Add token to headers for future requests | |
const originalFetch = window.fetch; | |
window.fetch = function(url, options = {{}}) {{ | |
if (!options.headers) {{ | |
options.headers = {{}}; | |
}} | |
// Add the token to the headers | |
options.headers["HF-Token"] = storedToken; | |
return originalFetch(url, options); | |
}}; | |
}} catch (e) {{ | |
console.error("Error parsing stored user:", e); | |
}} | |
}} | |
// Setup login button | |
const loginButton = document.getElementById("login-button"); | |
if (loginButton) {{ | |
loginButton.addEventListener("click", async function() {{ | |
try {{ | |
const clientId = "{client_id}"; | |
if (clientId) {{ | |
// Use HuggingFace OAuth | |
const loginUrl = await HfHub.oauthLoginUrl({{ | |
clientId: clientId, | |
redirectUrl: "{redirect_uri}", | |
scopes: ["openid", "profile"] | |
}}); | |
console.log("Redirecting to:", loginUrl); | |
window.location.href = loginUrl; | |
}} else {{ | |
// Fallback to token-based login | |
const token = prompt("Enter your HuggingFace token:"); | |
if (token) {{ | |
// Set the token as a cookie | |
document.cookie = "hf_token=" + token + "; path=/; SameSite=Strict"; | |
// Reload the page to apply the token | |
window.location.reload(); | |
}} | |
}} | |
}} catch (error) {{ | |
console.error("Error starting login process:", error); | |
alert("Error starting login process. Please try again."); | |
}} | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |
# Simple manual authentication check | |
def check_user(request: gr.Request): | |
if request: | |
# Check for HF-User header from Space OAuth | |
username = request.headers.get("HF-User") | |
if username: | |
# User is logged in via HF Spaces | |
print(f"User logged in via HF-User header: {username}") | |
user = db.get_user_by_username(username) | |
if not user: | |
# Create user if they don't exist | |
print(f"Creating new user: {username}") | |
is_admin = (username == "Quazim0t0") | |
db.add_user(username, username, is_admin) | |
user = db.get_user_by_username(username) | |
return username | |
# Check for token in headers (from our custom JS) | |
token = request.headers.get("HF-Token") | |
if token: | |
try: | |
# Validate token with HuggingFace | |
user_info = auth_manager.hf_api.whoami(token=token) | |
if user_info: | |
username = user_info.get("name", "") | |
print(f"User logged in via token: {username}") | |
return username | |
except Exception as e: | |
print(f"Token validation error: {e}") | |
return None | |
# Start evaluation queue worker | |
def start_queue_worker(): | |
# Wait a moment to ensure app is initialized | |
time.sleep(2) | |
try: | |
print("Starting evaluation queue worker...") | |
evaluation_queue.start_worker() | |
except Exception as e: | |
print(f"Error starting queue worker: {e}") | |
# Create Gradio app | |
with gr.Blocks(css=css, title="Dynamic Highscores") as app: | |
# State to track user | |
user_state = gr.State(None) | |
# Login section | |
with gr.Row(elem_classes=["login-section"]): | |
with gr.Column(): | |
gr.HTML(""" | |
<div style="display: flex; justify-content: space-between; align-items: center;"> | |
<div id="login-status">Not logged in</div> | |
<button id="login-button" style="padding: 8px 16px; background-color: #4CAF50; color: white; border: none; border-radius: 4px; cursor: pointer;">Login with HuggingFace</button> | |
</div> | |
""") | |
# Add the JS login script | |
gr.HTML(js_login_script()) | |
gr.Markdown("# π Dynamic Highscores", elem_classes=["header"]) | |
gr.Markdown(""" | |
Welcome to Dynamic Highscores - a community benchmark platform for evaluating and comparing language models. | |
- **Add your own benchmarks** from HuggingFace datasets | |
- **Submit your models** for CPU-only evaluation | |
- **Compare performance** across different models and benchmarks | |
- **Filter results** by model type (Merge, Agent, Reasoning, Coding, etc.) | |
""", elem_classes=["info-text"]) | |
# Main tabs | |
with gr.Tabs() as tabs: | |
with gr.TabItem("π Leaderboard", id=0): | |
leaderboard_ui = create_leaderboard_ui(leaderboard, db) | |
with gr.TabItem("π Submit Model", id=1): | |
submission_ui = create_model_submission_ui(evaluation_queue, auth_manager, db) | |
with gr.TabItem("π Benchmarks", id=2): | |
benchmark_ui = create_benchmark_selection_ui(benchmark_selector, auth_manager) | |
with gr.TabItem("π Community Framework", id=3): | |
community_ui = create_community_framework_ui(model_config_manager) | |
gr.Markdown(""" | |
### About Dynamic Highscores | |
This platform allows users to select benchmarks from HuggingFace datasets and evaluate models against them. | |
Each user can submit one benchmark per day (admin users are exempt from this limit). | |
All evaluations run on CPU only to ensure fair comparisons. | |
Created by Quazim0t0 | |
""", elem_classes=["footer"]) | |
# Check login on page load | |
app.load( | |
fn=check_user, | |
inputs=[], | |
outputs=[user_state] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
# Start queue worker in a separate thread | |
queue_thread = threading.Thread(target=start_queue_worker) | |
queue_thread.daemon = True | |
queue_thread.start() | |
# Launch the app | |
app.launch() | |