Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from datetime import datetime
|
8 |
+
import time
|
9 |
+
|
10 |
+
# --- Configuration ---
|
11 |
+
QA_FILE = "qa.txt"
|
12 |
+
RESULTS_FILE = "Eval_results.jsonl"
|
13 |
+
JUDGE_MODEL_REPO = "google/flan-t5-base" # A capable but relatively small model for judging
|
14 |
+
|
15 |
+
# --- Setup: Ensure files exist ---
|
16 |
+
if not os.path.exists(RESULTS_FILE):
|
17 |
+
with open(RESULTS_FILE, "w") as f:
|
18 |
+
pass # Create an empty file if it doesn't exist
|
19 |
+
|
20 |
+
if not os.path.exists(QA_FILE):
|
21 |
+
# Create a dummy qa.txt if it's missing, with a few example questions
|
22 |
+
dummy_data = """ID,Question_Type,Question,Golden_Answer_Summary
|
23 |
+
1,Code,"Create a Python function that implements the Bubble Sort algorithm.","The function should take a list, use nested loops to compare adjacent elements, and swap them if they are in the wrong order. The outer loop runs n times, and the inner loop runs n-i-1 times."
|
24 |
+
2,Common Chat,"What is the capital of France?","The answer must be Paris."
|
25 |
+
3,Advanced Code,"Write a Python script that connects to a public FTP server, lists the files in the root directory, and then disconnects.","The script must import the `ftplib` library. It should create an FTP object, for example `FTP('ftp.dlptest.com')`, call the `login()` method, then `retrlines('LIST')` to print the directory listing, and finally `quit()` to close the connection."
|
26 |
+
"""
|
27 |
+
with open(QA_FILE, "w") as f:
|
28 |
+
f.write(dummy_data)
|
29 |
+
|
30 |
+
|
31 |
+
# --- AI Judge Logic ---
|
32 |
+
def get_ai_judge_verdict(judge_pipeline, question, golden_summary, ai_answer):
|
33 |
+
"""
|
34 |
+
Uses the AI Judge model to give a verdict on the tested model's answer.
|
35 |
+
"""
|
36 |
+
system_instruction = f"""
|
37 |
+
You are an expert evaluator for an AI model benchmark. Your task is to determine if the AI's answer is a correct and satisfactory response to the user's question. You must only respond with a single character: '1' for a correct/passing answer, or '0' for an incorrect/failing answer.
|
38 |
+
|
39 |
+
A '1' means the AI's answer correctly addresses the main components of the question and is similar in spirit to the expected golden answer summary.
|
40 |
+
A '0' means the AI's answer is factually wrong, does not address the question, is a refusal to answer, or is fundamentally incomplete.
|
41 |
+
|
42 |
+
---
|
43 |
+
User Question:
|
44 |
+
{question}
|
45 |
+
|
46 |
+
Expected Golden Answer Summary:
|
47 |
+
{golden_summary}
|
48 |
+
|
49 |
+
---
|
50 |
+
AI Model's Answer:
|
51 |
+
{ai_answer}
|
52 |
+
---
|
53 |
+
|
54 |
+
Based on this, is the AI Model's Answer correct? Respond with only '1' or '0'.
|
55 |
+
"""
|
56 |
+
try:
|
57 |
+
response = judge_pipeline(system_instruction, max_new_tokens=5)
|
58 |
+
# Extract the generated text and clean it up
|
59 |
+
verdict = response[0]['generated_text'].strip()
|
60 |
+
# Ensure the verdict is either '1' or '0'
|
61 |
+
if '1' in verdict:
|
62 |
+
return 1
|
63 |
+
else:
|
64 |
+
return 0
|
65 |
+
except Exception:
|
66 |
+
# If the judge fails for any reason, default to a failing grade
|
67 |
+
return 0
|
68 |
+
|
69 |
+
# --- Core Evaluation Logic ---
|
70 |
+
def run_evaluation(model_repo, model_nickname, progress=gr.Progress()):
|
71 |
+
"""
|
72 |
+
Loads a user-specified model, runs it against the benchmark, evaluates the answers
|
73 |
+
using an AI judge, and saves the results.
|
74 |
+
"""
|
75 |
+
if not model_repo or not model_nickname:
|
76 |
+
gr.Warning("Model Repository and Nickname cannot be empty.")
|
77 |
+
return pd.DataFrame(), None
|
78 |
+
|
79 |
+
# Load benchmark questions
|
80 |
+
try:
|
81 |
+
questions_df = pd.read_csv(QA_FILE)
|
82 |
+
# Use a small subset for quick demos if needed
|
83 |
+
# questions_df = questions_df.head(3)
|
84 |
+
except Exception as e:
|
85 |
+
gr.Error(f"Failed to load benchmark questions from {QA_FILE}: {e}")
|
86 |
+
return pd.DataFrame(), None
|
87 |
+
|
88 |
+
# --- Load Models ---
|
89 |
+
progress(0, desc="Loading AI Judge Model...")
|
90 |
+
try:
|
91 |
+
judge_pipeline = pipeline("text2text-generation", model=JUDGE_MODEL_REPO, device_map="auto", torch_dtype=torch.bfloat16)
|
92 |
+
except Exception as e:
|
93 |
+
gr.Error(f"Failed to load AI Judge model '{JUDGE_MODEL_REPO}': {e}")
|
94 |
+
return pd.DataFrame(), None
|
95 |
+
|
96 |
+
progress(0.1, desc=f"Loading test model: {model_repo}")
|
97 |
+
try:
|
98 |
+
model_to_test_tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
99 |
+
model_to_test = AutoModelForCausalLM.from_pretrained(
|
100 |
+
model_repo,
|
101 |
+
device_map="auto",
|
102 |
+
torch_dtype=torch.bfloat16 # bfloat16 is good for ZeroGPU
|
103 |
+
)
|
104 |
+
test_pipeline = pipeline(
|
105 |
+
"text-generation",
|
106 |
+
model=model_to_test,
|
107 |
+
tokenizer=model_to_test_tokenizer,
|
108 |
+
max_new_tokens=1024, # Set a reasonable limit for code generation
|
109 |
+
do_sample=True,
|
110 |
+
temperature=0.7,
|
111 |
+
top_p=0.95
|
112 |
+
)
|
113 |
+
except Exception as e:
|
114 |
+
gr.Error(f"Failed to load the specified test model '{model_repo}': {e}")
|
115 |
+
return pd.DataFrame(), None
|
116 |
+
|
117 |
+
# --- Run Benchmark Loop ---
|
118 |
+
detailed_results = []
|
119 |
+
total_score = 0
|
120 |
+
total_questions = len(questions_df)
|
121 |
+
|
122 |
+
for i, row in enumerate(questions_df.itertuples()):
|
123 |
+
progress_val = 0.1 + (0.8 * (i / total_questions))
|
124 |
+
progress(progress_val, desc=f"Running Q{row.ID}/{total_questions}")
|
125 |
+
|
126 |
+
# Generate answer from the model being tested
|
127 |
+
try:
|
128 |
+
prompt = f"Question: {row.Question}\n\nAnswer:"
|
129 |
+
response = test_pipeline(prompt)
|
130 |
+
ai_answer = response[0]['generated_text'].replace(prompt, "").strip()
|
131 |
+
except Exception as e:
|
132 |
+
ai_answer = f"Error during generation: {e}"
|
133 |
+
|
134 |
+
# Get verdict from the AI Judge
|
135 |
+
score = get_ai_judge_verdict(judge_pipeline, row.Question, row.Golden_Answer_Summary, ai_answer)
|
136 |
+
total_score += score
|
137 |
+
|
138 |
+
detailed_results.append({
|
139 |
+
"ID": row.ID,
|
140 |
+
"Question": row.Question,
|
141 |
+
"AI_Answer": ai_answer,
|
142 |
+
"Score": score
|
143 |
+
})
|
144 |
+
time.sleep(0.1) # Small delay to allow UI to update
|
145 |
+
|
146 |
+
# --- Finalize and Save Results ---
|
147 |
+
progress(0.95, desc="Finalizing and saving...")
|
148 |
+
final_score_percent = (total_score / total_questions) * 100 if total_questions > 0 else 0
|
149 |
+
|
150 |
+
run_summary = {
|
151 |
+
"model_nickname": model_nickname,
|
152 |
+
"model_repo": model_repo,
|
153 |
+
"score_percent": round(final_score_percent, 2),
|
154 |
+
"timestamp": datetime.utcnow().isoformat(),
|
155 |
+
"detailed_results": detailed_results
|
156 |
+
}
|
157 |
+
|
158 |
+
try:
|
159 |
+
with open(RESULTS_FILE, "a") as f:
|
160 |
+
f.write(json.dumps(run_summary) + "\n")
|
161 |
+
except Exception as e:
|
162 |
+
gr.Warning(f"Could not save results to {RESULTS_FILE}: {e}")
|
163 |
+
|
164 |
+
progress(1, desc="Evaluation Complete!")
|
165 |
+
return pd.DataFrame(detailed_results), gr.Markdown(f"**Overall Score: {final_score_percent:.2f}%**")
|
166 |
+
|
167 |
+
|
168 |
+
# --- Leaderboard Logic ---
|
169 |
+
def load_leaderboard():
|
170 |
+
"""
|
171 |
+
Loads and displays the leaderboard from the results file.
|
172 |
+
"""
|
173 |
+
if not os.path.exists(RESULTS_FILE) or os.path.getsize(RESULTS_FILE) == 0:
|
174 |
+
return pd.DataFrame(columns=["Rank", "Model Nickname", "Score (%)", "Date"])
|
175 |
+
|
176 |
+
results_data = []
|
177 |
+
with open(RESULTS_FILE, "r") as f:
|
178 |
+
for line in f:
|
179 |
+
try:
|
180 |
+
data = json.loads(line)
|
181 |
+
results_data.append({
|
182 |
+
"Model Nickname": data.get("model_nickname"),
|
183 |
+
"Score (%)": data.get("score_percent"),
|
184 |
+
"Model Repo": data.get("model_repo"),
|
185 |
+
"Date": datetime.fromisoformat(data.get("timestamp")).strftime('%Y-%m-%d %H:%M:%S')
|
186 |
+
})
|
187 |
+
except (json.JSONDecodeError, KeyError):
|
188 |
+
# Skip corrupted or malformed lines
|
189 |
+
continue
|
190 |
+
|
191 |
+
if not results_data:
|
192 |
+
return pd.DataFrame(columns=["Rank", "Model Nickname", "Score (%)", "Date"])
|
193 |
+
|
194 |
+
leaderboard_df = pd.DataFrame(results_data)
|
195 |
+
leaderboard_df = leaderboard_df.sort_values(by="Score (%)", ascending=False).reset_index(drop=True)
|
196 |
+
leaderboard_df["Rank"] = leaderboard_df.index + 1
|
197 |
+
|
198 |
+
# Reorder columns for display
|
199 |
+
leaderboard_df = leaderboard_df[["Rank", "Model Nickname", "Score (%)", "Date", "Model Repo"]]
|
200 |
+
return leaderboard_df
|
201 |
+
|
202 |
+
|
203 |
+
# --- Gradio UI ---
|
204 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="NPFL Benchmark") as demo:
|
205 |
+
gr.Markdown("# NPFL (No Placeholders, Full Logic) AI Benchmark")
|
206 |
+
|
207 |
+
with gr.Tabs():
|
208 |
+
with gr.TabItem("Run Evaluation"):
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column(scale=2):
|
211 |
+
model_repo_input = gr.Textbox(
|
212 |
+
label="Hugging Face Model Repository",
|
213 |
+
placeholder="e.g., google/gemma-2b-it",
|
214 |
+
info="The model to be tested. Must be compatible with the text-generation pipeline."
|
215 |
+
)
|
216 |
+
model_nickname_input = gr.Textbox(
|
217 |
+
label="Model Nickname",
|
218 |
+
placeholder="e.g., Gemma-2B-v1",
|
219 |
+
info="A unique name to display on the leaderboard."
|
220 |
+
)
|
221 |
+
run_button = gr.Button("Start Evaluation", variant="primary")
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
final_score_output = gr.Markdown("**Overall Score: --**")
|
224 |
+
|
225 |
+
gr.Markdown("---")
|
226 |
+
gr.Markdown("### Detailed Run Results")
|
227 |
+
results_output = gr.DataFrame(
|
228 |
+
headers=["ID", "Question", "AI_Answer", "Score"],
|
229 |
+
wrap=True,
|
230 |
+
height=600
|
231 |
+
)
|
232 |
+
|
233 |
+
with gr.TabItem("Leaderboard"):
|
234 |
+
leaderboard_refresh_button = gr.Button("Refresh Leaderboard")
|
235 |
+
leaderboard_output = gr.DataFrame(
|
236 |
+
headers=["Rank", "Model Nickname", "Score (%)", "Date", "Model Repo"],
|
237 |
+
wrap=True,
|
238 |
+
height=700
|
239 |
+
)
|
240 |
+
|
241 |
+
# --- Event Handlers ---
|
242 |
+
run_button.click(
|
243 |
+
fn=run_evaluation,
|
244 |
+
inputs=[model_repo_input, model_nickname_input],
|
245 |
+
outputs=[results_output, final_score_output]
|
246 |
+
)
|
247 |
+
|
248 |
+
leaderboard_refresh_button.click(
|
249 |
+
fn=load_leaderboard,
|
250 |
+
inputs=[],
|
251 |
+
outputs=[leaderboard_output]
|
252 |
+
)
|
253 |
+
|
254 |
+
# Load leaderboard once on startup
|
255 |
+
demo.load(load_leaderboard, None, leaderboard_output)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
demo.launch(debug=True)
|