SuperBench-Eval / app.py
Enderchef's picture
Create app.py
e64e7b1 verified
raw
history blame
3.7 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from datasets import load_dataset
import torch
# Cache to avoid reloading the model
model_cache = {}
def load_model(model_id):
if model_id in model_cache:
return model_cache[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu")
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
model_cache[model_id] = generator
return generator
def format_prompt(item, source):
if source == "cais/mmlu":
prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
answer = item['answer']
elif source == "TIGER-Lab/MMLU-Pro":
prompt = f"{item['question']}\nA. {item['A']}\nB. {item['B']}\nC. {item['C']}\nD. {item['D']}\nAnswer:"
answer = item['answer']
elif source == "cais/hle":
prompt = f"{item['question']}\n{item['A']}\n{item['B']}\n{item['C']}\n{item['D']}\nAnswer:"
answer = item['answer']
else:
prompt, answer = "", ""
return prompt, answer
def evaluate(model_id, dataset_name, sample_count):
gen = load_model(model_id)
dataset = load_dataset(dataset_name)
if 'test' in dataset:
dataset = dataset['test']
else:
dataset = dataset[list(dataset.keys())[0]]
dataset = dataset.shuffle(seed=42).select(range(min(sample_count, len(dataset))))
correct = 0
results = []
for item in dataset:
prompt, answer = format_prompt(item, dataset_name)
output = gen(prompt, max_new_tokens=10, do_sample=False)[0]["generated_text"]
output_letter = next((char for char in output[::-1] if char in "ABCD"), None)
is_correct = output_letter == answer
correct += is_correct
results.append((prompt, output.strip(), answer, output_letter, is_correct))
accuracy = correct / len(dataset) * 100
return f"Accuracy: {accuracy:.2f}%", results
def run(model_id, benchmark, sample_count):
score, details = evaluate(model_id, benchmark, sample_count)
formatted = "\n\n".join([
f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
for q, o, a, g, c in details
])
return score, formatted
with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-width: 900px; margin: auto;}", analytics_enabled=False, custom_code=True) as demo:
gr.Markdown("""
# πŸ€– LLM Benchmark Evaluator
Easily evaluate your Hugging Face-hosted model on:
- **MMLU** (`cais/mmlu`)
- **MMLU-Pro** (`TIGER-Lab/MMLU-Pro`)
- **Humanity's Last Exam** (`cais/hle`)
Enter your model ID, pick a benchmark, and hit evaluate.
""")
with gr.Row():
model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
benchmark = gr.Dropdown(
label="Choose Benchmark",
choices=["cais/mmlu", "TIGER-Lab/MMLU-Pro", "cais/hle"],
value="cais/mmlu"
)
sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
run_button = gr.Button("πŸš€ Run Evaluation")
acc_output = gr.Textbox(label="Benchmark Accuracy", interactive=False)
detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
run_button.click(run, inputs=[model_id, benchmark, sample_count], outputs=[acc_output, detail_output])
demo.launch()