Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
from datasets import load_dataset
|
@@ -6,11 +7,13 @@ import torch
|
|
6 |
# Cache to avoid reloading the model
|
7 |
model_cache = {}
|
8 |
|
|
|
|
|
9 |
def load_model(model_id):
|
10 |
if model_id in model_cache:
|
11 |
return model_cache[model_id]
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
15 |
model_cache[model_id] = generator
|
16 |
return generator
|
@@ -20,7 +23,11 @@ def format_prompt(item, source):
|
|
20 |
prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
|
21 |
answer = item['answer']
|
22 |
elif source == "TIGER-Lab/MMLU-Pro":
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
answer = item['answer']
|
25 |
elif source == "cais/hle":
|
26 |
prompt = f"{item['question']}\n{item['A']}\n{item['B']}\n{item['C']}\n{item['D']}\nAnswer:"
|
@@ -31,7 +38,7 @@ def format_prompt(item, source):
|
|
31 |
|
32 |
def evaluate(model_id, dataset_name, sample_count):
|
33 |
gen = load_model(model_id)
|
34 |
-
dataset = load_dataset(dataset_name)
|
35 |
if 'test' in dataset:
|
36 |
dataset = dataset['test']
|
37 |
else:
|
@@ -50,33 +57,38 @@ def evaluate(model_id, dataset_name, sample_count):
|
|
50 |
results.append((prompt, output.strip(), answer, output_letter, is_correct))
|
51 |
|
52 |
accuracy = correct / len(dataset) * 100
|
53 |
-
return
|
54 |
|
55 |
def run(model_id, benchmark, sample_count):
|
56 |
-
|
|
|
|
|
|
|
57 |
formatted = "\n\n".join([
|
58 |
f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
|
59 |
for q, o, a, g, c in details
|
60 |
])
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-width: 900px; margin: auto;}", analytics_enabled=False) as demo:
|
64 |
gr.Markdown("""
|
65 |
# π€ LLM Benchmark Evaluator
|
66 |
|
67 |
-
|
68 |
-
- **
|
69 |
-
- **MMLU-Pro** (`TIGER-Lab/MMLU-Pro`)
|
70 |
-
- **Humanity's Last Exam** (`cais/hle`)
|
71 |
|
72 |
-
Enter your model ID, pick
|
73 |
""")
|
74 |
|
75 |
with gr.Row():
|
76 |
model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
|
77 |
benchmark = gr.Dropdown(
|
78 |
label="Choose Benchmark",
|
79 |
-
choices=["cais/mmlu"
|
80 |
value="cais/mmlu"
|
81 |
)
|
82 |
sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
|
@@ -84,7 +96,9 @@ with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-widt
|
|
84 |
run_button = gr.Button("π Run Evaluation")
|
85 |
acc_output = gr.Textbox(label="Benchmark Accuracy", interactive=False)
|
86 |
detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
|
|
|
87 |
|
88 |
run_button.click(run, inputs=[model_id, benchmark, sample_count], outputs=[acc_output, detail_output])
|
|
|
89 |
|
90 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
from datasets import load_dataset
|
|
|
7 |
# Cache to avoid reloading the model
|
8 |
model_cache = {}
|
9 |
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
+
|
12 |
def load_model(model_id):
|
13 |
if model_id in model_cache:
|
14 |
return model_cache[model_id]
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
18 |
model_cache[model_id] = generator
|
19 |
return generator
|
|
|
23 |
prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
|
24 |
answer = item['answer']
|
25 |
elif source == "TIGER-Lab/MMLU-Pro":
|
26 |
+
if all(opt in item for opt in ['A', 'B', 'C', 'D']):
|
27 |
+
prompt = f"{item['question']}\nA. {item['A']}\nB. {item['B']}\nC. {item['C']}\nD. {item['D']}\nAnswer:"
|
28 |
+
else:
|
29 |
+
choices = item.get("choices", ["", "", "", ""])
|
30 |
+
prompt = f"{item['question']}\nA. {choices[0]}\nB. {choices[1]}\nC. {choices[2]}\nD. {choices[3]}\nAnswer:"
|
31 |
answer = item['answer']
|
32 |
elif source == "cais/hle":
|
33 |
prompt = f"{item['question']}\n{item['A']}\n{item['B']}\n{item['C']}\n{item['D']}\nAnswer:"
|
|
|
38 |
|
39 |
def evaluate(model_id, dataset_name, sample_count):
|
40 |
gen = load_model(model_id)
|
41 |
+
dataset = load_dataset(dataset_name, token=HF_TOKEN)
|
42 |
if 'test' in dataset:
|
43 |
dataset = dataset['test']
|
44 |
else:
|
|
|
57 |
results.append((prompt, output.strip(), answer, output_letter, is_correct))
|
58 |
|
59 |
accuracy = correct / len(dataset) * 100
|
60 |
+
return accuracy, results
|
61 |
|
62 |
def run(model_id, benchmark, sample_count):
|
63 |
+
if benchmark != "cais/mmlu":
|
64 |
+
return "Only MMLU (cais/mmlu) is available now. MMLU-Pro and Humanity's Last Exam are coming soon.", ""
|
65 |
+
|
66 |
+
accuracy, details = evaluate(model_id, benchmark, sample_count)
|
67 |
formatted = "\n\n".join([
|
68 |
f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
|
69 |
for q, o, a, g, c in details
|
70 |
])
|
71 |
+
|
72 |
+
return f"Accuracy: {accuracy:.2f}%", formatted
|
73 |
+
|
74 |
+
def save_text(text):
|
75 |
+
return "evaluation_results.txt", text
|
76 |
|
77 |
with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-width: 900px; margin: auto;}", analytics_enabled=False) as demo:
|
78 |
gr.Markdown("""
|
79 |
# π€ LLM Benchmark Evaluator
|
80 |
|
81 |
+
Currently, only **MMLU** (`cais/mmlu`) is available for evaluation.
|
82 |
+
**MMLU-Pro** and **Humanity's Last Exam** will be coming soon.
|
|
|
|
|
83 |
|
84 |
+
Enter your model ID, pick MMLU, and hit evaluate.
|
85 |
""")
|
86 |
|
87 |
with gr.Row():
|
88 |
model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
|
89 |
benchmark = gr.Dropdown(
|
90 |
label="Choose Benchmark",
|
91 |
+
choices=["cais/mmlu"],
|
92 |
value="cais/mmlu"
|
93 |
)
|
94 |
sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
|
|
|
96 |
run_button = gr.Button("π Run Evaluation")
|
97 |
acc_output = gr.Textbox(label="Benchmark Accuracy", interactive=False)
|
98 |
detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
|
99 |
+
download_button = gr.Button("π₯ Download Full Evaluation")
|
100 |
|
101 |
run_button.click(run, inputs=[model_id, benchmark, sample_count], outputs=[acc_output, detail_output])
|
102 |
+
download_button.click(save_text, inputs=detail_output, outputs=gr.File())
|
103 |
|
104 |
+
demo.launch(share=True)
|