Spaces:
Sleeping
Sleeping
Doux Thibault
commited on
Commit
·
025e412
1
Parent(s):
99d115b
add llm to front + api key in dot env
Browse files- .env +1 -0
- Modules/rag.py +4 -6
- app.py +10 -2
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
MISTRAL_API_KEY = "i5jSJkCFNGKfgIztloxTMjfckiFbYBj4"
|
Modules/rag.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
| 3 |
-
|
| 4 |
-
#
|
| 5 |
-
os.environ['TAVILY_API_KEY'] = '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'
|
| 6 |
|
| 7 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
| 8 |
-
|
| 9 |
from langchain_community.document_loaders import PyPDFLoader
|
| 10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
from langchain_community.document_loaders import WebBaseLoader
|
|
@@ -19,7 +18,6 @@ from langchain_mistralai import ChatMistralAI
|
|
| 19 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
| 20 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 21 |
|
| 22 |
-
|
| 23 |
def load_chunk_persist_pdf() -> Chroma:
|
| 24 |
pdf_folder_path = "data/pdf_folder/"
|
| 25 |
documents = []
|
|
@@ -30,7 +28,7 @@ def load_chunk_persist_pdf() -> Chroma:
|
|
| 30 |
documents.extend(loader.load())
|
| 31 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
| 32 |
chunked_documents = text_splitter.split_documents(documents)
|
| 33 |
-
|
| 34 |
vectorstore = Chroma.from_documents(
|
| 35 |
documents=chunked_documents,
|
| 36 |
embedding=MistralAIEmbeddings(),
|
|
|
|
| 1 |
import os
|
| 2 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
load_dotenv() # load .env api keys
|
|
|
|
| 5 |
|
| 6 |
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
| 7 |
+
|
| 8 |
from langchain_community.document_loaders import PyPDFLoader
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_community.document_loaders import WebBaseLoader
|
|
|
|
| 18 |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
| 19 |
from langchain_community.tools import DuckDuckGoSearchRun
|
| 20 |
|
|
|
|
| 21 |
def load_chunk_persist_pdf() -> Chroma:
|
| 22 |
pdf_folder_path = "data/pdf_folder/"
|
| 23 |
documents = []
|
|
|
|
| 28 |
documents.extend(loader.load())
|
| 29 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
| 30 |
chunked_documents = text_splitter.split_documents(documents)
|
| 31 |
+
os.makedirs("data/chroma_store/", exist_ok=True)
|
| 32 |
vectorstore = Chroma.from_documents(
|
| 33 |
documents=chunked_documents,
|
| 34 |
embedding=MistralAIEmbeddings(),
|
app.py
CHANGED
|
@@ -2,11 +2,17 @@ import streamlit as st
|
|
| 2 |
from st_audiorec import st_audiorec
|
| 3 |
from Modules.Speech2Text.transcribe import transcribe
|
| 4 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
| 7 |
# Create two columns
|
| 8 |
col1, col2 = st.columns(2)
|
| 9 |
video_uploaded = None
|
|
|
|
| 10 |
|
| 11 |
# First column containers
|
| 12 |
with col1:
|
|
@@ -37,8 +43,10 @@ with col1:
|
|
| 37 |
|
| 38 |
with st.chat_message("assistant"):
|
| 39 |
# Build answer from LLM
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
st.subheader("Movement Analysis")
|
| 44 |
# TO DO
|
|
|
|
| 2 |
from st_audiorec import st_audiorec
|
| 3 |
from Modules.Speech2Text.transcribe import transcribe
|
| 4 |
import base64
|
| 5 |
+
from langchain_mistralai import ChatMistralAI
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
load_dotenv() # load .env api keys
|
| 8 |
+
import os
|
| 9 |
+
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
| 10 |
|
| 11 |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
| 12 |
# Create two columns
|
| 13 |
col1, col2 = st.columns(2)
|
| 14 |
video_uploaded = None
|
| 15 |
+
llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)
|
| 16 |
|
| 17 |
# First column containers
|
| 18 |
with col1:
|
|
|
|
| 43 |
|
| 44 |
with st.chat_message("assistant"):
|
| 45 |
# Build answer from LLM
|
| 46 |
+
|
| 47 |
+
response = llm.invoke(st.session_state.messages).content
|
| 48 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 49 |
+
st.markdown(response)
|
| 50 |
|
| 51 |
st.subheader("Movement Analysis")
|
| 52 |
# TO DO
|